Problem  Codeforces #550 (Div3) - G.Two Merged Sequences

Time Limit: 2000 mSec

Problem Description

Two integer sequences existed initially, one of them was strictly increasing, and another one — strictly decreasing.

Strictly increasing sequence is a sequence of integers [x1<x2<⋯<xk][x1<x2<⋯<xk] . And strictly decreasing sequence is a sequence of integers [y1>y2>⋯>yl][y1>y2>⋯>yl] . Note that the empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.

Elements of increasing sequence were inserted between elements of the decreasing one (and, possibly, before its first element and after its last element) without changing the order. For example, sequences [1,3,4][1,3,4] and [10,4,2][10,4,2] can produce the following resulting sequences: [10,1,3,4,2,4][10,1,3,4,2,4] , [1,3,4,10,4,2][1,3,4,10,4,2] . The following sequence cannot be the result of these insertions: [1,10,4,4,3,2][1,10,4,4,3,2] because the order of elements in the increasing sequence was changed.

Let the obtained sequence be aa . This sequence aa is given in the input. Your task is to find any two suitable initial sequences. One of them should be strictly increasing, and another one — strictly decreasing. Note that the empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.

If there is a contradiction in the input and it is impossible to split the given sequence aa into one increasing sequence and one decreasing sequence, print "NO".

Input

The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of elements in aa.

The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤2⋅1050≤ai≤2⋅105), where aiai is the ii-th element of a.

Output

If there is a contradiction in the input and it is impossible to split the given sequence aa into one increasing sequence and one decreasing sequence, print "NO" in the first line.

Otherwise print "YES" in the first line. In the second line, print a sequence of nn integers res1,res2,…,resnres1,res2,…,resn, where resiresi should be either 00 or 11 for each ii from 11 to nn. The ii-th element of this sequence should be 00 if the ii-th element of aa belongs to the increasing sequence, and 11 otherwise. Note that the empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.

Sample Input

9
5 1 3 6 8 2 9 0 10

Sample Output

YES
1 0 0 0 0 1 0 1 0

题解:两种做法,先说贪心,维护下降序列当前最小值M和上升序列当前最大值m

  1、a[i] > M && a[i] < m,自然无解。

  2、a[i] < M && a[i] < m,只能加到下降序列。

  3、a[i] > M && a[i] > m,只能加到上升序列。

  4、a[i] < M && a[i] > m,此时需要考虑a[i+1]与a[i]的大小关系,不妨假设a[i+1] > a[i],那么此时应将a[i]加入上升序列,原因很简单,如果把a[i]加入下降序列,则a[i+1]只能加入上升序列,显然这种方案不如把a[i]与a[i+1]都加入上升序列(下降的没动,上升的变化相同),另一种情况同理。

  以上四点给出贪心算法并说明贪心成立。

  第二种动态规划,分段决策类的动态规划,无非就是考虑第i个数加到上升还是下降,所以很容易想到二维dp,第一维表处理到第i个数,第二维表加入哪个序列,难想的地方在于要优化什么东西,这里的状态定义就很值得学习了:

  dp(i, 0)表示处理完前i个数,将i加入递增序列后递减序列元素中最后一个元素的最大值。

  dp(i, 1)表示处理完前i个数,将i加入递减序列后递增序列元素中最后一个元素的最小值。

我们肯定是希望前者越大越好,后者越小越好,这样给后面的数字提供更大的选择空间,其实这样定义状态看似有点绕,其实很合理,因为把i加入递增序列后,递增序列的最小值就有了,所以只需要再维护一下递减的最大值即可,加入递减序列同理。再说状态转移的问题,一般动态规划都是难在状态,此题也不例外,转移不难,就是枚举a[i]和a[i-1]分别放在哪种序列中即可,转移时要记录路径,方便最后输出。

  贪心代码没啥说的就不贴了,只给出dp代码。

 #include <bits/stdc++.h>

 using namespace std;

 #define REP(i, n) for (int i = 1; i <= (n); i++)
#define sqr(x) ((x) * (x)) const int maxn = + ;
const int maxm = + ;
const int maxs = + ; typedef long long LL;
typedef pair<int, int> pii;
typedef pair<double, double> pdd; const LL unit = 1LL;
const int INF = 0x3f3f3f3f;
const LL mod = ;
const double eps = 1e-;
const double inf = 1e15;
const double pi = acos(-1.0); int n;
int a[maxn], dp[maxn][];
int path[maxn][];
int ans[maxn]; int main()
{
ios::sync_with_stdio(false);
cin.tie();
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
cin >> n;
for (int i = ; i <= n; i++)
{
cin >> a[i];
}
dp[][] = INF, dp[][] = -INF;
for (int i = ; i <= n; i++)
{
dp[i][] = -INF, dp[i][] = INF;
if (a[i - ] < a[i] && dp[i][] < dp[i - ][])
{
dp[i][] = dp[i - ][];
path[i][] = ;
}
if (dp[i - ][] > a[i] && dp[i][] > a[i - ])
{
dp[i][] = a[i - ];
path[i][] = ;
}
if (a[i] > dp[i - ][] && dp[i][] < a[i - ])
{
dp[i][] = a[i - ];
path[i][] = ;
}
if (a[i] < a[i - ] && dp[i][] > dp[i - ][])
{
dp[i][] = dp[i - ][];
path[i][] = ;
}
}
if(dp[n][] > -INF)
{
cout << "YES" << endl;
int opt = ;
for(int i = n; i >= ; i--)
{
ans[i] = opt;
opt = path[i][opt];
}
for(int i = ; i <= n; i++)
{
cout << ans[i] << " ";
}
}
else if(dp[n][] < INF)
{
cout << "YES" << endl;
int opt = ;
for(int i = n; i >= ; i--)
{
ans[i] = opt;
opt = path[i][opt];
}
for(int i = ; i <= n; i++)
{
cout << ans[i] << " ";
}
}
else
{
cout << "NO";
}
return ;
}

Codeforces #550 (Div3) - G.Two Merged Sequences(dp / 贪心)的更多相关文章

  1. Codeforces 1144G Two Merged Sequences dp

    Two Merged Sequences 感觉是个垃圾题啊, 为什么过的人这么少.. dp[ i ][ 0 ]表示处理完前 i 个, 第 i 个是递增序列序列里的元素,递减序列的最大值. dp[ i ...

  2. Codeforces 429C Guess the Tree(状压DP+贪心)

    吐槽:这道题真心坑...做了一整天,我太蒻了... 题意 构造一棵 $ n $ 个节点的树,要求满足以下条件: 每个非叶子节点至少包含2个儿子: 以节点 $ i $ 为根的子树中必须包含 $ c_i ...

  3. Codeforces Round #276 (Div. 1)D.Kindergarten DP贪心

    D. Kindergarten     In a kindergarten, the children are being divided into groups. The teacher put t ...

  4. [CodeForces - 1272D] Remove One Element 【线性dp】

    [CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...

  5. codeforces #579(div3)

    codeforces #579(div3) A. Circle of Students 题意: 给定一个n个学生的编号,学生编号1~n,如果他们能够在不改变顺序的情况下按编号(无论是正序还是逆序,但不 ...

  6. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  7. (第二场)D Money 【dp\贪心】

    题目:https://www.nowcoder.com/acm/contest/140/D 题目描述: White Cloud has built n stores numbered from 1 t ...

  8. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  9. BZOJ 2021 [Usaco2010 Jan]Cheese Towers:dp + 贪心

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2021 题意: John要建一个奶酪塔,高度最大为m. 他有n种奶酪.第i种高度为h[i]( ...

随机推荐

  1. ASP.NET Aries 高级开发教程:Excel导入配置之规则说明(下)

    前言: 前面两篇都是大体介绍流程,有一些配置细节,没有细说,这里用一篇补上. 1.Excel配置项 起始行索引.列头跨行数: 对于自定义的Excel导入模板(有时候模板是由客户提供,模板的规则很乱) ...

  2. 数组属性的习题、Arrays工具、二维数组

    一.数组的练习 1.声明一个char类型的数组, 从键盘录入6个字符: [1]遍历输出 [2]排序 [3]把char数组转化成一个逆序的数组. import java.util.Scanner; pu ...

  3. cassandra 堆外内存管理

    为什么需要堆外内存呢 单有一些大内存对象的时候,JVM进行垃圾回收时需要收集所有的这些对象的内存也.增加了GC压力.因此需要使用堆外内存. java 分配堆外内存 org.apache.cassand ...

  4. 学习ASP.NET Core Razor 编程系列十一——把新字段更新到数据库

    学习ASP.NET Core Razor 编程系列目录 学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二——添加一个实体 学习ASP.NET ...

  5. 解读经典《C#高级编程》继承 页107-113.章4

    前言 本章节开始讲接口. 接口 接口的声明很像抽象类,有方法的声明但无方法体.但它比抽象类限制更多.和类比起来,接口的定义有众多限制. 接口只能包含声明,而无方法体 接口只能包含方法.属性.索引器.事 ...

  6. Redux进阶(Redux背后的Flux)

    简介 Flux是一种搭建WEB客户端的应用架构,更像是一种模式而不是一个框架. 特点 单向数据流 与MVC的比较 1.传统的MVC如下所示(是一个双向数据流模型) 用户触发事件 View通知Contr ...

  7. 浅谈Quartz.Net 从无到有创建实例

    一.Quartz.Net介绍 Quartz.NET是一个开源的作业调度框架,非常适合在平时的工作中,定时轮询数据库同步,定时邮件通知,定时处理数据等. Quartz.NET允许开发人员根据时间间隔(或 ...

  8. Spring Tool Suite4(sts)复制粘贴卡顿(ctrl+v, ctrl+c)、按住ctrl也很卡

    最近在看<Spring in Action, Fifth Edition>,下载了Spring Tool Suite4,在使用的过程中发现了一些问题: 只要在复制粘贴(ctrl+c, ct ...

  9. Eclipse代码快捷键

    今天终于找到了代码注释快捷键:ctrl+shift+/取消注释快捷键:ctrl+shift+\ Java文件:注释和取消注释的快捷键都是:CTRL + / 或 Shift+Ctrl+C JS文件:注释 ...

  10. PHP数字金额转换大写金额

    早些年做CRM用到的一个金额转换函数,今天从旧项目中拿出来记录一下.金额转换的函数方法有很多,都很不错.不过这个是小崔刚工作的时候写的一个转换函数,多少还是有点纪念意义.如有问题请朋友们指出,小崔及时 ...