Problem  Codeforces #550 (Div3) - G.Two Merged Sequences

Time Limit: 2000 mSec

Problem Description

Two integer sequences existed initially, one of them was strictly increasing, and another one — strictly decreasing.

Strictly increasing sequence is a sequence of integers [x1<x2<⋯<xk][x1<x2<⋯<xk] . And strictly decreasing sequence is a sequence of integers [y1>y2>⋯>yl][y1>y2>⋯>yl] . Note that the empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.

Elements of increasing sequence were inserted between elements of the decreasing one (and, possibly, before its first element and after its last element) without changing the order. For example, sequences [1,3,4][1,3,4] and [10,4,2][10,4,2] can produce the following resulting sequences: [10,1,3,4,2,4][10,1,3,4,2,4] , [1,3,4,10,4,2][1,3,4,10,4,2] . The following sequence cannot be the result of these insertions: [1,10,4,4,3,2][1,10,4,4,3,2] because the order of elements in the increasing sequence was changed.

Let the obtained sequence be aa . This sequence aa is given in the input. Your task is to find any two suitable initial sequences. One of them should be strictly increasing, and another one — strictly decreasing. Note that the empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.

If there is a contradiction in the input and it is impossible to split the given sequence aa into one increasing sequence and one decreasing sequence, print "NO".

Input

The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of elements in aa.

The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤2⋅1050≤ai≤2⋅105), where aiai is the ii-th element of a.

Output

If there is a contradiction in the input and it is impossible to split the given sequence aa into one increasing sequence and one decreasing sequence, print "NO" in the first line.

Otherwise print "YES" in the first line. In the second line, print a sequence of nn integers res1,res2,…,resnres1,res2,…,resn, where resiresi should be either 00 or 11 for each ii from 11 to nn. The ii-th element of this sequence should be 00 if the ii-th element of aa belongs to the increasing sequence, and 11 otherwise. Note that the empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.

Sample Input

9
5 1 3 6 8 2 9 0 10

Sample Output

YES
1 0 0 0 0 1 0 1 0

题解:两种做法,先说贪心,维护下降序列当前最小值M和上升序列当前最大值m

  1、a[i] > M && a[i] < m,自然无解。

  2、a[i] < M && a[i] < m,只能加到下降序列。

  3、a[i] > M && a[i] > m,只能加到上升序列。

  4、a[i] < M && a[i] > m,此时需要考虑a[i+1]与a[i]的大小关系,不妨假设a[i+1] > a[i],那么此时应将a[i]加入上升序列,原因很简单,如果把a[i]加入下降序列,则a[i+1]只能加入上升序列,显然这种方案不如把a[i]与a[i+1]都加入上升序列(下降的没动,上升的变化相同),另一种情况同理。

  以上四点给出贪心算法并说明贪心成立。

  第二种动态规划,分段决策类的动态规划,无非就是考虑第i个数加到上升还是下降,所以很容易想到二维dp,第一维表处理到第i个数,第二维表加入哪个序列,难想的地方在于要优化什么东西,这里的状态定义就很值得学习了:

  dp(i, 0)表示处理完前i个数,将i加入递增序列后递减序列元素中最后一个元素的最大值。

  dp(i, 1)表示处理完前i个数,将i加入递减序列后递增序列元素中最后一个元素的最小值。

我们肯定是希望前者越大越好,后者越小越好,这样给后面的数字提供更大的选择空间,其实这样定义状态看似有点绕,其实很合理,因为把i加入递增序列后,递增序列的最小值就有了,所以只需要再维护一下递减的最大值即可,加入递减序列同理。再说状态转移的问题,一般动态规划都是难在状态,此题也不例外,转移不难,就是枚举a[i]和a[i-1]分别放在哪种序列中即可,转移时要记录路径,方便最后输出。

  贪心代码没啥说的就不贴了,只给出dp代码。

 #include <bits/stdc++.h>

 using namespace std;

 #define REP(i, n) for (int i = 1; i <= (n); i++)
#define sqr(x) ((x) * (x)) const int maxn = + ;
const int maxm = + ;
const int maxs = + ; typedef long long LL;
typedef pair<int, int> pii;
typedef pair<double, double> pdd; const LL unit = 1LL;
const int INF = 0x3f3f3f3f;
const LL mod = ;
const double eps = 1e-;
const double inf = 1e15;
const double pi = acos(-1.0); int n;
int a[maxn], dp[maxn][];
int path[maxn][];
int ans[maxn]; int main()
{
ios::sync_with_stdio(false);
cin.tie();
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
cin >> n;
for (int i = ; i <= n; i++)
{
cin >> a[i];
}
dp[][] = INF, dp[][] = -INF;
for (int i = ; i <= n; i++)
{
dp[i][] = -INF, dp[i][] = INF;
if (a[i - ] < a[i] && dp[i][] < dp[i - ][])
{
dp[i][] = dp[i - ][];
path[i][] = ;
}
if (dp[i - ][] > a[i] && dp[i][] > a[i - ])
{
dp[i][] = a[i - ];
path[i][] = ;
}
if (a[i] > dp[i - ][] && dp[i][] < a[i - ])
{
dp[i][] = a[i - ];
path[i][] = ;
}
if (a[i] < a[i - ] && dp[i][] > dp[i - ][])
{
dp[i][] = dp[i - ][];
path[i][] = ;
}
}
if(dp[n][] > -INF)
{
cout << "YES" << endl;
int opt = ;
for(int i = n; i >= ; i--)
{
ans[i] = opt;
opt = path[i][opt];
}
for(int i = ; i <= n; i++)
{
cout << ans[i] << " ";
}
}
else if(dp[n][] < INF)
{
cout << "YES" << endl;
int opt = ;
for(int i = n; i >= ; i--)
{
ans[i] = opt;
opt = path[i][opt];
}
for(int i = ; i <= n; i++)
{
cout << ans[i] << " ";
}
}
else
{
cout << "NO";
}
return ;
}

Codeforces #550 (Div3) - G.Two Merged Sequences(dp / 贪心)的更多相关文章

  1. Codeforces 1144G Two Merged Sequences dp

    Two Merged Sequences 感觉是个垃圾题啊, 为什么过的人这么少.. dp[ i ][ 0 ]表示处理完前 i 个, 第 i 个是递增序列序列里的元素,递减序列的最大值. dp[ i ...

  2. Codeforces 429C Guess the Tree(状压DP+贪心)

    吐槽:这道题真心坑...做了一整天,我太蒻了... 题意 构造一棵 $ n $ 个节点的树,要求满足以下条件: 每个非叶子节点至少包含2个儿子: 以节点 $ i $ 为根的子树中必须包含 $ c_i ...

  3. Codeforces Round #276 (Div. 1)D.Kindergarten DP贪心

    D. Kindergarten     In a kindergarten, the children are being divided into groups. The teacher put t ...

  4. [CodeForces - 1272D] Remove One Element 【线性dp】

    [CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...

  5. codeforces #579(div3)

    codeforces #579(div3) A. Circle of Students 题意: 给定一个n个学生的编号,学生编号1~n,如果他们能够在不改变顺序的情况下按编号(无论是正序还是逆序,但不 ...

  6. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  7. (第二场)D Money 【dp\贪心】

    题目:https://www.nowcoder.com/acm/contest/140/D 题目描述: White Cloud has built n stores numbered from 1 t ...

  8. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  9. BZOJ 2021 [Usaco2010 Jan]Cheese Towers:dp + 贪心

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2021 题意: John要建一个奶酪塔,高度最大为m. 他有n种奶酪.第i种高度为h[i]( ...

随机推荐

  1. vue 预渲染遇到的坑

    前言: 最近公司项目需要增加seo搜索引擎优化,到网上找了下资料,有预渲染和服务端渲染两种方式,考虑到只需要渲染首页所以我选择了先启用比较简单的预渲染方式来做seo! 步骤: 1.安装 prerend ...

  2. Android进阶之光-第1章-Android新特性-读书笔记

    第 1 章 Android 新特性 1.1 Android 5.0 新特性 1.1.1 Android 5.0 主要新特性 1. 全新的 Material Design 新风格 Material De ...

  3. dataframe行变换为列

    新建一个 dataFrame : val conf = new SparkConf().setAppName("TTyb").setMaster("local" ...

  4. Python爬虫入门教程 49-100 Appium安装+操作51JOB_APP(模拟手机操作之一)手机APP爬虫

    爬前准备工作 在开始安装Appium之前,你要先知道Appium是做什么的?Appium 是一个自动化测试开源工具,看到没,做测试用的,它有点类似Selenium,可以自动操作APP实现一系列的操作. ...

  5. FileSizeUtil【获取文件夹或文件的大小】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 获取文件夹或者文件的大小,可以指定单位,也可以自动计算合适的单位值. 效果图 代码分析 常用的方法: getFolderOrFile ...

  6. java~springboot~gradle里的docker集成

    在springboot里,我们的task任务可以添加docker构建的功能,在gradle集成环境里,直接可以实现编译,测试,打包镜像的流水线作业,很是方便! 下面分享给大家,在gradle里添加do ...

  7. swagger文档转换为WebApiClient声明式代码

    1 swagger简介 Swagger是一个规范且完整的框架,提供描述.生产.消费和可视化RESTful Web Service.其核心是使用json来规范描述RESTful接口,另外有提供UI来查看 ...

  8. kernel 进阶API

    1. #define cond_resched() ({ \ ___might_sleep(__FILE__, __LINE__, ); \ _cond_resched(); \ }) int __s ...

  9. 求求你别用SimpleDateFormat了!

    前言   啊哈哈,标题写的比较随意了,其实呢最近在各种面试以及博客中,SimpleDateFormat出镜率确实是比较高了,为什么?其实聪明的你们肯定知道,那必须是有坑呗,是的,那我们就以案例来分析一 ...

  10. Spring Cloud Alibaba基础教程:Sentinel使用Nacos存储规则

    通过上一篇<使用Sentinel实现接口限流>的介绍,相信大家对Sentinel已经有了初步的认识.在Spring Cloud Alibaba的整合封装之下,接口限流这件事情可以非常轻易的 ...