[BZOJ1002] [FJOI2007] 轮状病毒 (数学)
Description
给定n(N<=100),编程计算有多少个不同的n轮状病毒。

Input
第一行有1个正整数n。
Output
将编程计算出的不同的n轮状病毒数输出
Sample Input
Sample Output
16
HINT
Source
Solution
基尔霍夫矩阵,左转生成树的计数及其应用
推出本题的递推式:f[n] = f[n - 1] * 3 - f[n - 2] + 2
如果你能看懂,拜托给我讲讲,本人不懂。
注意要使用高精度
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
struct bigint
{
int a[]; bigint()
{
memset(a, , sizeof(a));
} bigint operator + (int rhs)
{
bigint ans;
for(int i = ; i <= a[]; i++)
ans.a[i] = a[i];
ans.a[]++, ans.a[] += rhs;
for(int i = ; i < ans.a[]; i++)
{
ans.a[i + ] += ans.a[i] / ;
ans.a[i] %= ;
}
while(!ans.a[ans.a[]])
ans.a[]--;
return ans;
} bigint operator - (bigint rhs)
{
bigint ans;
ans.a[] = a[];
for(int i = ; i <= ans.a[]; i++)
ans.a[i] = a[i] - rhs.a[i];
for(int i = ; i < ans.a[]; i++)
if(ans.a[i] < )
{
ans.a[i] += ;
ans.a[i + ] -= ;
}
while(!ans.a[ans.a[]])
ans.a[]--;
return ans;
} bigint operator * (int rhs)
{
bigint ans;
ans.a[] = a[] + ;
for(int i = ; i <= ans.a[]; i++)
ans.a[i] = a[i] * rhs;
for(int i = ; i < ans.a[]; i++)
{
ans.a[i + ] += ans.a[i] / ;
ans.a[i] %= ;
}
while(!ans.a[ans.a[]])
ans.a[]--;
return ans;
} }f[]; int main()
{
int n;
cin >> n;
f[].a[] = , f[].a[] = ;
f[].a[] = f[].a[] = ;
for(int i = ; i <= n; i++)
f[i] = f[i - ] * - f[i - ] + ;
for(int i = f[n].a[]; i; i--)
cout << f[n].a[i];
cout << endl;
return ;
}
[BZOJ1002] [FJOI2007] 轮状病毒 (数学)的更多相关文章
- BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】
BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...
- [bzoj1002][FJOI2007]轮状病毒_递推_高精度
轮状病毒 bzoj-1002 FJOI-2007 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2 ...
- bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)
1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...
- BZOJ1002[FJOI2007]轮状病毒
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
- [bzoj1002][FJOI2007 轮状病毒] (生成树计数+递推+高精度)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- [luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】
题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...
- bzoj1002: [FJOI2007]轮状病毒 生成树计数
轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规 ...
- BZOJ1002:[FJOI2007]轮状病毒(找规律,递推)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
- [bzoj1002] [FJOI2007]轮状病毒轮状病毒(基尔霍夫矩阵)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...
随机推荐
- js收藏代码
js收藏代码~ 1. oncontextmenu="window.event.returnValue=false" 将彻底屏蔽鼠标右键 <table border oncon ...
- centos7时间同步
用ntpdate从时间服务器更新时间 1.如果你的linux系统根本没有ntpdate这个命令 yum install -y ntp 2.安装完了之后,你不要做什么配置,也不需要,直接测试一下 [ro ...
- 在linux内核中修改TCP MSS值
MTU: Maxitum Transmission Unit 最大传输单元 MSS: Maxitum Segment Size 最大分段大小 MSS最大传输大小的缩写,是TCP协议里面的一个概念.MS ...
- Android查缺补漏(IPC篇)-- Bundle、文件共享、ContentProvider、Messenger四种进程间通讯介绍
本文作者:CodingBlock 文章链接:http://www.cnblogs.com/codingblock/p/8387752.html 进程间通讯篇系列文章目录: Android查缺补漏(IP ...
- WinFom中经典小游戏(含源码)
最近整理了若干经典的小游戏,无聊时可以打发时间.程序本身不大,练手非常不错,主要是GDI编程,主界面地址如下图所示 源码下载方式 1,关注微信公众号:小特工作室(也可直接扫描签名处二维码) 2,发送: ...
- 【学习笔记】 使用XML配置和注解实现Spring的依赖注入DI (2-3-2)
Spring的四个核心组件 1.beans Bean是包装应用程序自定义对象Object的 Object中保存数据 2.core 3.context 一个Bean的关系集合 4.expression ...
- 基于gmap.net制作离线地图下载器
网上已有大量文章介绍gamp.net和离线下载相关的文章了.我就不在介绍gmap相关的文章了,这里着重介绍一下下载相关原理.其实gmap.net本身已自带下载工能,只是离线图片下载到sqlit中,现将 ...
- Spring中的@scope注解
默认是单例模式,即scope="singleton".另外scope还有prototype.request.session.global session作用域.scope=&quo ...
- Js常用的函数
1.用于对正则表达式的函数: var pattern=/\d{3}-\d{2}-\d{4}/;//这里产生的是一个object类型 alert(pattern.test("cscscscs& ...
- 两种实现方式mycat多租户,枚举分片,注解拦截
第一种: 优点:支持进一步分片 缺点:schema配置繁琐 注解式 /*!mycat:schema=[schemaName] */ 注意:这在navicat 里面是会报错的,请用命令行登陆myc ...