最终效果:


其实这个小功能非常有用,甚至加上只有给人感觉好像人脸检测,目标检测直接成了demo了,主要代码如下:
// localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene; for (size_t i = 0; i < good_matches.size(); ++i)
{
// get the keypoints from the good matches
obj.push_back(keyPoints_1[ good_matches[i].queryIdx ].pt);
scene.push_back(keyPoints_2[ good_matches[i].trainIdx ].pt);
}
Mat H = findHomography( obj, scene, CV_RANSAC ); // get the corners from the image_1
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint( img_1.cols, 0);
obj_corners[2] = cvPoint( img_1.cols, img_1.rows);
obj_corners[3] = cvPoint( 0, img_1.rows);
std::vector<Point2f> scene_corners(4); perspectiveTransform( obj_corners, scene_corners, H); // draw lines between the corners (the mapped object in the scene - image_2)
line( img_matches, scene_corners[0] + Point2f( img_1.cols, 0), scene_corners[1] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[1] + Point2f( img_1.cols, 0), scene_corners[2] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[2] + Point2f( img_1.cols, 0), scene_corners[3] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[3] + Point2f( img_1.cols, 0), scene_corners[0] + Point2f( img_1.cols, 0),Scalar(0,255,0));


基本原理是利用函数:findHomography,该 函数是求两幅图像的单应性矩阵或者叫(单映射矩阵),它是一个3*3的矩阵。findHomography: 计算多个二维点对之间的最优单映射变换矩阵 H(3行x3列) ,使用最小均方误差或者RANSAC方法 。

    单应性矩阵算过后的投影点的偏移量 scene_corners[0],就是在匹配图像中的点的位置,因为效果图像相当于增加了一个待匹配图像的宽度,所以每一个点都要加上Point2f( img_1.cols, 0)

两个重要函数的介绍:

findHomography

功能:在两个平面之间寻找单映射变换矩阵 结构:
Mat findHomography(InputArray srcPoints, InputArray dstPoints, int method=0, double ransacReprojThreshold=3, OutputArray mask=noArray() )

srcPoints :在原平面上点的坐标,CV_32FC2 的矩阵或者vector<Point2f> 
dstPoints :在目标平面上点的坐标,CV_32FC2 的矩阵或者 vector<Point2f> . 
method – 
用于计算单映射矩阵的方法.  
0 - 使用所有的点的常规方法 
CV_RANSAC - 基于 RANSAC 的方法

CV_LMEDS - 基于Least-Median 的方法

ransacReprojThreshold: 处理一组点对为内部点的最大容忍重投影误差(只在RANSAC方法中使用),其形式为:

如果     

那么点i则被考虑为内部点,如果srcPoints和dstPoints是以像素为单位,通常把参数设置为1-10范围内

这个函数的作用是在原平面和目标平面之间返回一个单映射矩阵

因此反投影误差 是最小的。

如果参数被设置为0,那么这个函数使用所有的点和一个简单的最小二乘算法来计算最初的单应性估计,但是,如果不是所有的点对都完全符合透视变换,那么这个初始的估计会很差,在这种情况下,你可以使用两个robust算法中的一个。 RANSAC 和LMeDS , 使用坐标点对生成了很多不同的随机组合子集(每四对一组),使用这些子集和一个简单的最小二乘法来估计变换矩阵,然后计算出单应性的质量,最好的子集被用来产生初始单应性的估计和掩码。 
RANSAC方法几乎可以处理任何异常,但是需要一个阈值, LMeDS 方法不需要任何阈值,但是只有在inliers大于50%时才能计算正确,最后,如果没有outliers和噪音非常小,则可以使用默认的方法。

PerspectiveTransform

功能:向量数组的透视变换

结构:

void perspectiveTransform(InputArray src, OutputArray dst, InputArray m)

src :输入两通道或三通道的浮点数组,每一个元素是一个2D/3D 的矢量转换

dst :输出和src同样的size和type 
m :3x3 或者4x4浮点转换矩阵 
转换方法为:

 

文档官方介绍:

实现代码:


// OpenCV_sift.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream> #include <vector>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "opencv2/calib3d/calib3d.hpp" using namespace cv;
using namespace std; #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_objdetect2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib")
#pragma comment(lib,"opencv_features2d2410d.lib")
#pragma comment(lib,"opencv_legacy2410d.lib")
#pragma comment(lib,"opencv_calib3d2410d.lib") int main()
{
Mat img_1 = imread("1.jpg");
Mat img_2 = imread("2.jpg");
if (!img_1.data || !img_2.data)
{
cout << "error reading images " << endl;
return -1;
} ORB orb;
vector<KeyPoint> keyPoints_1, keyPoints_2;
Mat descriptors_1, descriptors_2; orb(img_1, Mat(), keyPoints_1, descriptors_1);
orb(img_2, Mat(), keyPoints_2, descriptors_2); BruteForceMatcher<HammingLUT> matcher;
vector<DMatch> matches;
matcher.match(descriptors_1, descriptors_2, matches); double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 0.6*max_dist )
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < 0.6*max_dist )
{
good_matches.push_back( matches[i]);
}
} Mat img_matches;
drawMatches(img_1, keyPoints_1, img_2, keyPoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); // localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene; for (size_t i = 0; i < good_matches.size(); ++i)
{
// get the keypoints from the good matches
obj.push_back(keyPoints_1[ good_matches[i].queryIdx ].pt);
scene.push_back(keyPoints_2[ good_matches[i].trainIdx ].pt);
}
Mat H = findHomography( obj, scene, CV_RANSAC ); // get the corners from the image_1
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint( img_1.cols, 0);
obj_corners[2] = cvPoint( img_1.cols, img_1.rows);
obj_corners[3] = cvPoint( 0, img_1.rows);
std::vector<Point2f> scene_corners(4); perspectiveTransform( obj_corners, scene_corners, H); // draw lines between the corners (the mapped object in the scene - image_2)
line( img_matches, scene_corners[0] + Point2f( img_1.cols, 0), scene_corners[1] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[1] + Point2f( img_1.cols, 0), scene_corners[2] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[2] + Point2f( img_1.cols, 0), scene_corners[3] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[3] + Point2f( img_1.cols, 0), scene_corners[0] + Point2f( img_1.cols, 0),Scalar(0,255,0)); imshow( "Match", img_matches);
cvWaitKey();
return 0;
}


当然也可以用其他特征点检测的算法来做:
/*
SIFT sift;
sift(img_1, Mat(), keyPoints_1, descriptors_1);
sift(img_2, Mat(), keyPoints_2, descriptors_2);
BruteForceMatcher<L2<float> > matcher;
*/ /*
SURF surf;
surf(img_1, Mat(), keyPoints_1);
surf(img_2, Mat(), keyPoints_2);
SurfDescriptorExtractor extrator;
extrator.compute(img_1, keyPoints_1, descriptors_1);
extrator.compute(img_2, keyPoints_2, descriptors_2);
BruteForceMatcher<L2<float> > matcher;
*/



图片:












参考文献:
ORB特征
早在,OpenCV2.3RC中已经有了实现
OpenCV中ORB特征这个是之前系列中转载整理的文章
5.http://blog.csdn.net/merlin_q/article/details/7026375

OpenCV特征点检测匹配图像-----添加包围盒的更多相关文章

  1. OpenCV特征点检测------ORB特征

    OpenCV特征点检测------ORB特征 ORB是是ORiented Brief的简称.ORB的描述在下面文章中: Ethan Rublee and Vincent Rabaud and Kurt ...

  2. python+OpenCV 特征点检测

    1.Harris角点检测 Harris角点检测算法是一个极为简单的角点检测算法,该算法在1988年就被发明了,算法的主要思想是如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点.基本原理是根据 ...

  3. OpenCV特征点检测------Surf(特征点篇)

    Surf(Speed Up Robust Feature) Surf算法的原理                                                              ...

  4. OpenCV特征点检测——Surf(特征点篇)&flann

    学习OpenCV--Surf(特征点篇)&flann 分类: OpenCV特征篇计算机视觉 2012-04-20 21:55 19887人阅读评论(20)收藏举报 检测特征 Surf(Spee ...

  5. OpenCV特征点检测——ORB特征

            ORB算法 目录(?)[+] 什么是ORB 如何解决旋转不变性 如何解决对噪声敏感的问题 关于尺度不变性 关于计算速度 关于性能 Related posts 什么是ORB 七 4 Ye ...

  6. OpenCV特征点检测

    特征点检测 目标 在本教程中,我们将涉及: 使用 FeatureDetector 接口来发现感兴趣点.特别地: 使用 SurfFeatureDetector 以及它的函数 detect 来实现检测过程 ...

  7. OpenCV特征点检测算法对比

    识别算法概述: SIFT/SURF基于灰度图, 一.首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点, ...

  8. OpenCV 特征点检测

    #include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #inclu ...

  9. OPENCV图像特征点检测与FAST检测算法

    前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...

随机推荐

  1. THUPC2017 抱大腿记

    Day 0: 移步http://www.cnblogs.com/juruolty/p/6854848.html Day 1: 来到了清华大学. 见到了zrt巨巨. 又发了件衣服,我们开始看别的队的名字 ...

  2. SpringCloud学习之zuul

    一.为什么要有网关 我们先看一个图,如果按照consumer and server(最初的调用方式),如下所示 这样我们要面临如下问题: 1. 用户面临着一对N的问题既用户必须知道每个服务.随着服务的 ...

  3. Django中数据查询(万能下换线,聚合,F,Q)

    数据查询中万能的下划线基本用法: __contains: 包含 __icontains: 包含(忽略大小写) __startswith: 以什么开头 __istartswith: 以什么开头(忽略大小 ...

  4. 携程Java后台开发三面面经

    前言 携程是我面试的第一个互联网公司,投递的岗位是后台开发实习生,总共面了三面,止步于人才库.中间兜兜转转,复杂的心理活动,不足与外人道也.唯有面试的技术部分与大家共享. 宣讲会完了之后有个手写代码的 ...

  5. vsftpd详解(ubuntu)

    安装 apt-get instll vsftpd 配置vsftp vim vsftpd.conf listen=YES listen_port= anonymous_enable=NO local_e ...

  6. Linux查看CPU、内存、进程使用情况(转)

    在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要.在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况.运行 top 命令后,CPU 使用状态会 ...

  7. java底层学习

    额,马上就要面试了,Java的底层肯定是需要了解的.网上找了找java的底层文章,做个记号.java底层主要是类的加载.连接和初始化. 本文主要分为四个方面: (1)java底层概述 (2)new和n ...

  8. Python中capitalize()与title()的区别

    capitalize()与title()都可以实现字符串首字母大写.主要区别在于:capitalize(): 字符串第一个字母大写title(): 字符串内的所有单词的首字母大写 例如: >&g ...

  9. CRM客户关系管理系统(三)

    第四章.kingadmin开发设计 4.1.kingadmin设计 自定义admin注册model的写法 crm/admin.py class CustomerAdmin(admin.ModelAdm ...

  10. 网页底部广告悬浮弹窗(css)

    有的单页面需要添加广告等悬浮div. 部分代码: <div class="flex"> 内容.... </div> 主要css代码: .flex{posit ...