最终效果:


其实这个小功能非常有用,甚至加上只有给人感觉好像人脸检测,目标检测直接成了demo了,主要代码如下:
// localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene; for (size_t i = 0; i < good_matches.size(); ++i)
{
// get the keypoints from the good matches
obj.push_back(keyPoints_1[ good_matches[i].queryIdx ].pt);
scene.push_back(keyPoints_2[ good_matches[i].trainIdx ].pt);
}
Mat H = findHomography( obj, scene, CV_RANSAC ); // get the corners from the image_1
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint( img_1.cols, 0);
obj_corners[2] = cvPoint( img_1.cols, img_1.rows);
obj_corners[3] = cvPoint( 0, img_1.rows);
std::vector<Point2f> scene_corners(4); perspectiveTransform( obj_corners, scene_corners, H); // draw lines between the corners (the mapped object in the scene - image_2)
line( img_matches, scene_corners[0] + Point2f( img_1.cols, 0), scene_corners[1] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[1] + Point2f( img_1.cols, 0), scene_corners[2] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[2] + Point2f( img_1.cols, 0), scene_corners[3] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[3] + Point2f( img_1.cols, 0), scene_corners[0] + Point2f( img_1.cols, 0),Scalar(0,255,0));


基本原理是利用函数:findHomography,该 函数是求两幅图像的单应性矩阵或者叫(单映射矩阵),它是一个3*3的矩阵。findHomography: 计算多个二维点对之间的最优单映射变换矩阵 H(3行x3列) ,使用最小均方误差或者RANSAC方法 。

    单应性矩阵算过后的投影点的偏移量 scene_corners[0],就是在匹配图像中的点的位置,因为效果图像相当于增加了一个待匹配图像的宽度,所以每一个点都要加上Point2f( img_1.cols, 0)

两个重要函数的介绍:

findHomography

功能:在两个平面之间寻找单映射变换矩阵 结构:
Mat findHomography(InputArray srcPoints, InputArray dstPoints, int method=0, double ransacReprojThreshold=3, OutputArray mask=noArray() )

srcPoints :在原平面上点的坐标,CV_32FC2 的矩阵或者vector<Point2f> 
dstPoints :在目标平面上点的坐标,CV_32FC2 的矩阵或者 vector<Point2f> . 
method – 
用于计算单映射矩阵的方法.  
0 - 使用所有的点的常规方法 
CV_RANSAC - 基于 RANSAC 的方法

CV_LMEDS - 基于Least-Median 的方法

ransacReprojThreshold: 处理一组点对为内部点的最大容忍重投影误差(只在RANSAC方法中使用),其形式为:

如果     

那么点i则被考虑为内部点,如果srcPoints和dstPoints是以像素为单位,通常把参数设置为1-10范围内

这个函数的作用是在原平面和目标平面之间返回一个单映射矩阵

因此反投影误差 是最小的。

如果参数被设置为0,那么这个函数使用所有的点和一个简单的最小二乘算法来计算最初的单应性估计,但是,如果不是所有的点对都完全符合透视变换,那么这个初始的估计会很差,在这种情况下,你可以使用两个robust算法中的一个。 RANSAC 和LMeDS , 使用坐标点对生成了很多不同的随机组合子集(每四对一组),使用这些子集和一个简单的最小二乘法来估计变换矩阵,然后计算出单应性的质量,最好的子集被用来产生初始单应性的估计和掩码。 
RANSAC方法几乎可以处理任何异常,但是需要一个阈值, LMeDS 方法不需要任何阈值,但是只有在inliers大于50%时才能计算正确,最后,如果没有outliers和噪音非常小,则可以使用默认的方法。

PerspectiveTransform

功能:向量数组的透视变换

结构:

void perspectiveTransform(InputArray src, OutputArray dst, InputArray m)

src :输入两通道或三通道的浮点数组,每一个元素是一个2D/3D 的矢量转换

dst :输出和src同样的size和type 
m :3x3 或者4x4浮点转换矩阵 
转换方法为:

 

文档官方介绍:

实现代码:


// OpenCV_sift.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream> #include <vector>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "opencv2/calib3d/calib3d.hpp" using namespace cv;
using namespace std; #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_objdetect2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib")
#pragma comment(lib,"opencv_features2d2410d.lib")
#pragma comment(lib,"opencv_legacy2410d.lib")
#pragma comment(lib,"opencv_calib3d2410d.lib") int main()
{
Mat img_1 = imread("1.jpg");
Mat img_2 = imread("2.jpg");
if (!img_1.data || !img_2.data)
{
cout << "error reading images " << endl;
return -1;
} ORB orb;
vector<KeyPoint> keyPoints_1, keyPoints_2;
Mat descriptors_1, descriptors_2; orb(img_1, Mat(), keyPoints_1, descriptors_1);
orb(img_2, Mat(), keyPoints_2, descriptors_2); BruteForceMatcher<HammingLUT> matcher;
vector<DMatch> matches;
matcher.match(descriptors_1, descriptors_2, matches); double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 0.6*max_dist )
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < 0.6*max_dist )
{
good_matches.push_back( matches[i]);
}
} Mat img_matches;
drawMatches(img_1, keyPoints_1, img_2, keyPoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); // localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene; for (size_t i = 0; i < good_matches.size(); ++i)
{
// get the keypoints from the good matches
obj.push_back(keyPoints_1[ good_matches[i].queryIdx ].pt);
scene.push_back(keyPoints_2[ good_matches[i].trainIdx ].pt);
}
Mat H = findHomography( obj, scene, CV_RANSAC ); // get the corners from the image_1
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint( img_1.cols, 0);
obj_corners[2] = cvPoint( img_1.cols, img_1.rows);
obj_corners[3] = cvPoint( 0, img_1.rows);
std::vector<Point2f> scene_corners(4); perspectiveTransform( obj_corners, scene_corners, H); // draw lines between the corners (the mapped object in the scene - image_2)
line( img_matches, scene_corners[0] + Point2f( img_1.cols, 0), scene_corners[1] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[1] + Point2f( img_1.cols, 0), scene_corners[2] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[2] + Point2f( img_1.cols, 0), scene_corners[3] + Point2f( img_1.cols, 0),Scalar(0,255,0));
line( img_matches, scene_corners[3] + Point2f( img_1.cols, 0), scene_corners[0] + Point2f( img_1.cols, 0),Scalar(0,255,0)); imshow( "Match", img_matches);
cvWaitKey();
return 0;
}


当然也可以用其他特征点检测的算法来做:
/*
SIFT sift;
sift(img_1, Mat(), keyPoints_1, descriptors_1);
sift(img_2, Mat(), keyPoints_2, descriptors_2);
BruteForceMatcher<L2<float> > matcher;
*/ /*
SURF surf;
surf(img_1, Mat(), keyPoints_1);
surf(img_2, Mat(), keyPoints_2);
SurfDescriptorExtractor extrator;
extrator.compute(img_1, keyPoints_1, descriptors_1);
extrator.compute(img_2, keyPoints_2, descriptors_2);
BruteForceMatcher<L2<float> > matcher;
*/



图片:












参考文献:
ORB特征
早在,OpenCV2.3RC中已经有了实现
OpenCV中ORB特征这个是之前系列中转载整理的文章
5.http://blog.csdn.net/merlin_q/article/details/7026375

OpenCV特征点检测匹配图像-----添加包围盒的更多相关文章

  1. OpenCV特征点检测------ORB特征

    OpenCV特征点检测------ORB特征 ORB是是ORiented Brief的简称.ORB的描述在下面文章中: Ethan Rublee and Vincent Rabaud and Kurt ...

  2. python+OpenCV 特征点检测

    1.Harris角点检测 Harris角点检测算法是一个极为简单的角点检测算法,该算法在1988年就被发明了,算法的主要思想是如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点.基本原理是根据 ...

  3. OpenCV特征点检测------Surf(特征点篇)

    Surf(Speed Up Robust Feature) Surf算法的原理                                                              ...

  4. OpenCV特征点检测——Surf(特征点篇)&flann

    学习OpenCV--Surf(特征点篇)&flann 分类: OpenCV特征篇计算机视觉 2012-04-20 21:55 19887人阅读评论(20)收藏举报 检测特征 Surf(Spee ...

  5. OpenCV特征点检测——ORB特征

            ORB算法 目录(?)[+] 什么是ORB 如何解决旋转不变性 如何解决对噪声敏感的问题 关于尺度不变性 关于计算速度 关于性能 Related posts 什么是ORB 七 4 Ye ...

  6. OpenCV特征点检测

    特征点检测 目标 在本教程中,我们将涉及: 使用 FeatureDetector 接口来发现感兴趣点.特别地: 使用 SurfFeatureDetector 以及它的函数 detect 来实现检测过程 ...

  7. OpenCV特征点检测算法对比

    识别算法概述: SIFT/SURF基于灰度图, 一.首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点, ...

  8. OpenCV 特征点检测

    #include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #inclu ...

  9. OPENCV图像特征点检测与FAST检测算法

    前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...

随机推荐

  1. C++符号优先级

    C++符号优先级 优先级 操作符 功能 用法 结合性 1 ()[]->.::++-- Grouping operatorArray accessMember access from a poin ...

  2. A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.

    原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot 一个使 ...

  3. Flexible DEMO 实现手淘H5页面的终端适配

    <!DOCTYPE html> <html> <head> <title>淘宝flexiblejs</title> <meta cha ...

  4. 值得珍藏的HTTP协议详解

    转自:http://www.cnblogs.com/li0803/archive/2008/11/03/1324746.html 引言 HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式 ...

  5. Error:Cannot build Artifact :war exploded because it is included into a circular depency

    找到项目的目录 查找artifacts文件夹 删掉不是你项目名称的那个 问题出现的原因是你该项目名字了 造成tomcat发布两个网页 发布两个网页不是什么大问题 但是这两玩意地址一样 争夺资源啊冲突之 ...

  6. VUE相关资料合集

    ===官方=== https://github.com/vuejs/vue vue-components组件库 ---PC端--- https://github.com/ElemeFE/element ...

  7. Python中如何将二维列表转换成一维列表

    已知:a = [(4,2,3), (5, 9, 1), (7,8,9)]希望将二维列表转换成一维列表:["4,2,3", "5, 9, 1", "7, ...

  8. Java内存泄漏分析系列之四:jstack生成的Thread Dump日志线程状态

    原文地址:http://www.javatang.com Thread Dump日志的线程信息 以下面的日志为例: "resin-22129" daemon prio=10 tid ...

  9. 整理的Java List Set Map是否有序,元素是否允许重复

    整理的Java List Set Map是否有序,元素是否允许重复的说明,如下图:

  10. 剑指Offer——中国银行面试知识储备

    剑指Offer--中国银行面试知识储备+面试内容 事件介绍 时间:2016.11.23 08:30 地点:北京市海淀区永丰路299号南门(中国银行软件中心) 事件:中国银行面试(中英文面试) 注意事项 ...