第九篇:Map/Reduce 工作机制分析 - 作业的执行流程
前言
从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情。
那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易" 地实现分布式运行?
Map/Reduce 任务执行总流程
经过之前的学习,我们已经知道一个 Map/Reduce 作业的总流程为:
代码编写 --> 作业配置 --> 作业提交 --> Map任务的分配和执行 --> 处理中间结果(Shuffle) --> Reduce任务的分配和执行 --> 作业完成
如下图所示:
Map/Reduce 框架中的四大实体
1. 客户端
负责编写代码,配置作业,提交作业。任何节点都可以充当客户端。
2. JobTracker (1个)
作业中心控制节点,一般一个集群就一个JobTracker。
3. TaskTracker (很多个)
作业具体执行节点,可以分为Map节点和Reduce节点两大类。
4. HDFS
分布式文件系统,保存从作业提交到完成需要的各种信息。
阶段一:提交作业阶段
1. 首先,开发人员编写好程序代码,配置好输入输出路径,Key/Value 类型等等。(这部分是人为控制阶段,接下来的所有操作都是Hadoop完成的了)
2. 从JobTracker处获取当前的作业ID号
3. 检查配置合法性 (如输入目录是否存在等)
4. 计算作业的输入划分,并将划分信息写入到Job.split文件。
5. 将运行作业需要的所有资源都复制到HDFS上。
6. 通知JobTracker准备完毕,可以执行作业了。
阶段二:初始化作业阶段
这个阶段,JobTracker将为作业创建一个对象,专门监控它的运行。
并根据Job.split文件(上一步生成)来创建并初始化Map任务和Reduce任务。
阶段三:分配任务
JobTracker和TaskTracker之间通信和任务分配是通过心跳机制来完成的,每个TaskTracker作为一个单独的JVM执行一个简单的循环。
TaskTracker每隔一段时间都会向JobTracker汇报它的任务进展报告,JobTracker在收到进展报告以后如果发现任务完成了,就会给它再分配新的任务。
一般来说TaskTracker有个任务槽,它是有容量限制的 - 只能装载一定个数的Map/Reduce任务。
这一步和下一步,就形成一次心跳。
阶段四:执行任务
这一步的主体是TaskTracker,主要任务是实现任务的本地化。
具体步骤如下:
1. 将job.split复制到本地
2. 将job.jar复制到本地
3. 将job的配置信息写入到job.xml
4. 创建本地任务目录,解压job.jar
5. 发布任务并在新的JVM里执行此任务。
6. 最后将计算结果保存到本地缓存
小结
本文细致分析了Map/Reduce的作业执行流程。
但在流程的执行过程当中,数据的具体流动途径也是需要仔细分析的 - 是存放在本地磁盘,还是HDFS?
另外,还需要做好错误处理 - 比如说某个节点坏了怎么办?
这些将在后面的两篇文章中做出分析和介绍。
第九篇:Map/Reduce 工作机制分析 - 作业的执行流程的更多相关文章
- Map/Reduce 工作机制分析 --- 作业的执行流程
前言 从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情. 那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易& ...
- 第十篇:Map/Reduce 工作机制分析 - 数据的流向分析
前言 在MapReduce程序中,待处理的数据最开始是放在HDFS上的,这点无异议. 接下来,数据被会被送往一个个Map节点中去,这也无异议. 下面问题来了:数据在被Map节点处理完后,再何去何从呢? ...
- Map/Reduce 工作机制分析 --- 数据的流向分析
前言 在MapReduce程序中,待处理的数据最开始是放在HDFS上的,这点无异议. 接下来,数据被会被送往一个个Map节点中去,这也无异议. 下面问题来了:数据在被Map节点处理完后,再何去何从呢? ...
- 第十一篇:Map/Reduce 工作机制分析 - 错误处理机制
前言 对于Hadoop集群来说,节点损坏是非常常见的现象. 而Hadoop一个很大的特点就是某个节点的损坏,不会影响到整个分布式任务的运行. 下面就来分析Hadoop平台是如何做到的. 硬件故障 硬件 ...
- Map/Reduce 工作机制分析 --- 错误处理机制
前言 对于Hadoop集群来说,节点损坏是非常常见的现象. 而Hadoop一个很大的特点就是某个节点的损坏,不会影响到整个分布式任务的运行. 下面就来分析Hadoop平台是如何做到的. 硬件故障 硬件 ...
- MapReduce作业的执行流程
MapReduce任务执行总流程 一个MapReduce作业的执行流程是:代码编写 -> 作业配置 -> 作业提交 -> Map任务的分配和执行 -> 处理中间结果 -> ...
- Yii2 源码分析 入口文件执行流程
Yii2 源码分析 入口文件执行流程 1. 入口文件:web/index.php,第12行.(new yii\web\Application($config)->run()) 入口文件主要做4 ...
- MapReduce启动的Map/Reduce子任务简要分析
对于Hadoop来说,是通过在DataNode中启动Map/Reduce java进程的方式来实现分布式计算处理的,那么就从源码层简要分析一下hadoop中启动Map/Reduce任务的过程. ...
- Java IO工作机制分析
Java的IO类都在java.io包下,这些类大致可分为以下4种: 基于字节操作的 I/O 接口:InputStream 和 OutputStream 基于字符操作的 I/O 接口:Writer 和 ...
随机推荐
- Shell脚本查看linux系统性能瓶颈(转)
Shell脚本查看linux系统性能瓶颈(转自:http://blog.51cto.com/lizhenliang/1687612) [root@test ~]# cat show_sys_info. ...
- Flask從入門到入土(二)——請求响应與Flask扩展
———————————————————————————————————————————————————————————— 一.程序和請求上下文 Flask從客戶端收到請求時,要讓視圖函數能訪問一些對象 ...
- 2道acm编程题(2014):1.编写一个浏览器输入输出(hdu acm1088);2.encoding(hdu1020)
//1088(参考博客:http://blog.csdn.net/libin56842/article/details/8950688)//1.编写一个浏览器输入输出(hdu acm1088)://思 ...
- UVa230 Borrowers
原题链接 UVa230 思路 这题输入时有一些字符串处理操作,可以利用string的substr()函数和find_last_of()函数更加方便,处理时不必更要把书名和作者对应下来,注意到原题书名的 ...
- day3(while、流程控制)
一.while 语法 white 条件: 执行代码... 小练习: #打印0-100的偶数 count = 0 while count <= 100: if count %2 == 0 : pr ...
- 【Elasticsearch全文搜索引擎实战】之集群搭建及配置
文中Elasticsearch版本为6.0.1 1. 环境配置 把环境配置放在第一节来讲,是因为很多人按官网的Getting Started安装运行会有各种错误.其实都是因为一些配置不正确引起的. 首 ...
- TCP/IP三次握手四次挥手
本文通过图来梳理TCP-IP协议相关知识.TCP通信过程包括三个步骤:建立TCP连接通道,传输数据,断开TCP连接通道.如图所示,给出了TCP通信过程的示意图. TCP 三次握手四次挥手 主要包括三部 ...
- vim使用教程
vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一定会对这个编辑器失去兴趣的.下面的文章翻译自<Learn Vim Progress ...
- linux分析apache日志获取最多访问的前10个IP
apache日志分析可以获得很多有用的信息,现在来试试最基本的,获取最多访问的前10个IP地址及访问次数. 既然是统计,那么awk是必不可少的,好用而高效. 命令如下: awk '{a[$1] += ...
- 终于,我也要出一本C#的书了 - 我的写作历程与C#书单推荐
我之前的面试题停了很久,是因为 - 我写书去了. 前言 我于2012年3月开始工作,到现在马上就满六年了.这六年里,我从一个连Sql server是什么都不知道,只会写最简单的c#的程序员开始做起,一 ...