面试之路(16)-归并排序详解(MergeSort)递归和非递归实现
归并排序的概念及定义
归并排序(Merge)是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。 将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
归并排序算法稳定,数组需要O(n)的额外空间,链表需要O(log(n))的额外空间,时间复杂度为O(nlog(n)),算法不是自适应的,不需要对数据的随机读取。
算法思路:
①把 n 个记录看成 n 个长度为1的有序子表;
②进行两两归并使记录关键字有序,得到 n/2 个长度为 2 的有序子表;
③重复第②步直到所有记录归并成一个长度为 n 的有序表为止。
此算法的实现不像图示那样简单,现分三步来讨论。首先从宏观上分析,首先让子表表长 L=1 进行处理;不断地使 L=2*L ,进行子表处理,直到 L>=n 为止,把这一过程写成一个主体框架函数 mergesort 。
java代码实现
public class MergeSortTest {
public static void main(String[] args) {
int[] data = new int[] { 4, 9, 11, 8, 67, 3, 4, 2, 32 };
print(data);
mergeSort(data);
System.out.println("排序后的数组:");
print(data);
}
public static void mergeSort(int[] data) {
sort(data, 0, data.length - 1);
}
public static void sort(int[] data, int left, int right) {
if (left >= right)
return;
// 找出中间索引
int center = (left + right) / 2;
// 对左边数组进行递归
sort(data, left, center);
// 对右边数组进行递归
sort(data, center + 1, right);
// 合并
merge(data, left, center, right);
print(data);
}
/**
* 将两个数组进行归并,归并前面2个数组已有序,归并后依然有序
*
* @param data
* 数组对象
* @param left
* 左数组的第一个元素的索引
* @param center
* 左数组的最后一个元素的索引,center+1是右数组第一个元素的索引
* @param right
* 右数组最后一个元素的索引
*/
public static void merge(int[] data, int left, int center, int right) {
// 临时数组
int[] tmpArray = new int[data.length];
// 右数组第一个元素索引
int midNew = center + 1;
// third 记录临时数组的索引
int third = left;
// 缓存左数组第一个元素的索引
int tmp = left;
while (left <= center && midNew <= right) {
// 从两个数组中取出最小的放入临时数组
if (data[left] <= data[mid]) {
tmpArray[third++] = data[left++];
} else {
tmpArray[third++] = data[mid++];
}
}
// 剩余部分依次放入临时数组(实际上两个while只会执行其中一个)
while (midNew <= right) {
tmpArray[third++] = data[midNew++];
}
while (left <= center) {
tmpArray[third++] = data[left++];
}
// 将临时数组中的内容拷贝回原数组中
// (原left-right范围的内容被复制回原数组)
while (tmp <= right) {
data[tmp] = tmpArray[tmp++];
}
}
public static void print(int[] data) {
for (int i = 0; i < data.length; i++) {
System.out.print(data[i] + "\t");
}
System.out.println();
}
}
非递归实现 (引用上面的merge函数,重写sort函数)
public class MergeSortTest {
public static void main(String[] args) {
int[] data = new int[] { 4, 9, 11, 8, 67, 3, 4, 2, 32 };
print(data);
mergeSort(data);
System.out.println("排序后的数组:");
print(data);
}
public static void mergeSort(int[] data) {
sort(data, 0, data.length - 1);
}
public static void sort(int[] data) {
int n = data.length;
//步长
int s = 2;
int i;
while(s<=n){
i=0;
while(i+s<=n){
merge(data,i,i+s/2-1,i+s-1);
i+=s;
}
//处理末尾残余部分
merge(data,i,i+s/2-1,n-1);
s*=2;
}
//最后再从头到尾处理一遍
merge(data,0,s/2-1,n-1);
}
/**
* 将两个数组进行归并,归并前面2个数组已有序,归并后依然有序
*
* @param data
* 数组对象
* @param left
* 左数组的第一个元素的索引
* @param center
* 左数组的最后一个元素的索引,center+1是右数组第一个元素的索引
* @param right
* 右数组最后一个元素的索引
*/
public static void merge(int[] data, int left, int center, int right) {
// 临时数组
int[] tmpArray = new int[data.length];
// 右数组第一个元素索引
int midNew = center + 1;
// third 记录临时数组的索引
int third = left;
// 缓存左数组第一个元素的索引
int tmp = left;
while (left <= center && midNew <= right) {
// 从两个数组中取出最小的放入临时数组
if (data[left] <= data[mid]) {
tmpArray[third++] = data[left++];
} else {
tmpArray[third++] = data[mid++];
}
}
// 剩余部分依次放入临时数组(实际上两个while只会执行其中一个)
while (midNew <= right) {
tmpArray[third++] = data[midNew++];
}
while (left <= center) {
tmpArray[third++] = data[left++];
}
// 将临时数组中的内容拷贝回原数组中
// (原left-right范围的内容被复制回原数组)
while (tmp <= right) {
data[tmp] = tmpArray[tmp++];
}
}
public static void print(int[] data) {
for (int i = 0; i < data.length; i++) {
System.out.print(data[i] + "\t");
}
System.out.println();
}
}
归并排序总结:
(1)稳定性
归并排序是一种稳定的排序。
(2)存储结构要求
可用顺序存储结构。也易于在链表上实现。
(3)时间复杂度
对长度为n的文件,需进行 lgn趟二路归并,每趟归并的时间为O(n),故其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlgn)。
(4)空间复杂度
需要一个辅助向量来暂存两有序子文件归并的结果,故其辅助空间复杂度为O(n),显然它不是就地排序。
本文参考如下两篇博客:
http://www.cnblogs.com/shudonghe/p/3302888.html
http://blog.csdn.net/apei830/article/details/6591632
面试之路(16)-归并排序详解(MergeSort)递归和非递归实现的更多相关文章
- Java网络编程和NIO详解5:Java 非阻塞 IO 和异步 IO
Java网络编程和NIO详解5:Java 非阻塞 IO 和异步 IO Java 非阻塞 IO 和异步 IO 转自https://www.javadoop.com/post/nio-and-aio 本系 ...
- 不止面试—jvm类加载面试题详解
面试题 带着问题学习是最高效的,本次我们将尝试回答以下问题: 什么是类的加载? 哪些情况会触发类的加载? 讲一下JVM加载一个类的过程 什么时候会为变量分配内存? JVM的类加载机制是什么? 双亲委派 ...
- 【面试】详解同步/异步/阻塞/非阻塞/IO含义与案例
本文详解同步.异步.阻塞.非阻塞,以及IO与这四者的关联,毕竟我当初刚认识这几个名词的时候也是一脸懵. 目录 1.同步阻塞.同步非阻塞.异步阻塞.异步非阻塞 1.同步 2.异步 3.阻塞 4.非阻塞 ...
- Java归并排序的递归与非递归实现
该命题已有无数解释,备份修改后的代码 平均时间复杂度: O(NLogN) 以2为底 最好情况时间复杂度: O(NLogN) 最差情况时间复杂度: O(NLogN) 所需要额外空间: 递归:O(N + ...
- java归并排序详解
归并排序 /** * 归并排序 * 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列 * 时间 ...
- 归并排序详解(python实现)
因为上个星期leetcode的一道题(Median of Two Sorted Arrays)所以想仔细了解一下归并排序的实现. 还是先阐述一下排序思路: 首先归并排序使用了二分法,归根到底的思想还是 ...
- Java快速排序和归并排序详解
快速排序 概述 快速排序算法借鉴的是二叉树前序遍历的思想,最终对数组进行排序. 优点: 对于数据量比较大的数组排序,由于采用的具有二叉树二分的思想,故排序速度比较快 局限 只适用于顺序存储结构的数据排 ...
- JavaScript 面试中常见算法问题详解
1.阐述下 JavaScript 中的变量提升 所谓提升,顾名思义即是 JavaScript 会将所有的声明提升到当前作用域的顶部.这也就意味着我们可以在某个变量声明前就使用该变量,不过虽然 Java ...
- 最全 C 语言常用算法详解-排序-队列-堆栈-链表-递归-树 (面试有用)
具体 源代码 案例查看github,持续更新中............ github地址:https://github.com/Master-fd/C-Algorithm 1. 二分法查找 2. 冒泡 ...
随机推荐
- Dynamics CRM2015 页面导航栏顶部全局快速查找功能配置
在CRM2015中微软加入了新的快速查找功能,让你的数据查找更加方便,功能栏如下图所示,直接可以框中输入搜索项进行搜索. 但该功能是需要进行些配置,具体的配置在设置-管理-系统设置中,默认的就是红框中 ...
- 剑指offer-面试题7:俩个栈实现队列(c)
- DBoW2应用
图像对应的bag-of-words向量\(v_t\) 假设词典总共有\(W\)个单词,那么每一幅图像能够用一个\(W\)维的向量表示 \((t_1, t_2, t_3, ..., t_W)\)其中 \ ...
- 【问题汇总】ScrollView嵌套GridView的问题
在开发中遇到了ScrollView嵌套GridView的情况,由于这两款控件都自带滚动条,当它们碰到一起的时候便会出问题,即GridView会显示不全. 解决办法,自定义一个GridView控件. [ ...
- 【ShaderToy】基础篇之谈谈点、线的绘制
写在前面 写前面一篇的时候,发现还是不够基础.因此打算增加几篇基础篇,从点线面开始,希望可以更好理解. 其实用Pixel Shader的过程很像在纸上绘画的过程.屏幕上的每一个像素对应了纸上的一个方格 ...
- 如何在web.xml文件中引入其他的xml文件(拆分web.xml)
转载自:http://www.blogjava.net/jiangjf/archive/2009/04/09/264685.html 最近在做一个Servlet+javaBean的项目,服务器用的是t ...
- printk的用法
printk的用法 内核通过 printk() 输出的信息具有日志级别,日志级别是通过在 printk() 输出的字符串前加一个带尖括号的整数来控制的,如 printk("<6> ...
- 漫谈android系统(4)bring up panel
点击打开链接 版权声明: 作者:alex wang 版权:本文版权归作者和CSDN共有 转载:欢迎转载,为了保存作者的创作热情,请按要求[转载],谢谢 要求:未经作者同意,必须保留此段声明:必须在文章 ...
- BAT有增有减 互联网2015校园…
又到一年开学季,也是毕业生开始被各种招聘.宣讲所围绕的时节. 在众多行业中,互联网在过往几年,也属于较热门的第一梯队之中.不过,在2015年的经济形势下,大家不由地疑问,互联网企业的招聘还会持续吗? ...
- 11、Libgdx的音频
(官网:www.libgdx.cn) Libgdx提供了简单的方法对较小的音效和磁盘中的音乐进行回放.它同样也提供了方便的针对音频硬件的读写权限. 所有的音频操作都通过audio模块来完成: Audi ...