bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\)
题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了
\(a^b\%c=a^{b\%\phi c} gcd(b,c)==1\)
\(a^b\%c=a^{b\%\phi c+\phi c} gcd(b,c)!=1\)
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=10000000+10,maxn=400000+10,inf=0x3f3f3f3f;
int prime[N],cnt,phi[N];
bool mark[N];
void init()
{
phi[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i]){prime[++cnt]=i;phi[i]=i-1;}
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
phi[i*prime[j]]=phi[i]*phi[prime[j]];
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
}
int main()
{
init();
int T;scanf("%d",&T);
while(T--)
{
vi v;
ll p;scanf("%lld",&p);
ll pp=p;
while(p!=1)
{
v.pb(p);
// printf("%lld\n",p);
p=phi[p];
}
ll now=1;
for(int i=(int)v.size()-1;i>=0;i--)
{
now=qp(2,now,v[i])+(i?v[i]:0);
}
printf("%lld\n",now%pp);
}
return 0;
}
/********************
********************/
bzoj3884: 上帝与集合的正确用法 扩展欧拉定理的更多相关文章
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 【bzoj3884】上帝与集合的正确用法 扩展欧拉定理
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- BZOJ3884题解上帝与集合的正确用法--扩展欧拉定理
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3884 分析 扩展欧拉定理裸题 欧拉定理及证明: 如果\((a,m)=1\),则\(a^{ ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884 上帝与集合的正确用法 【欧拉定理】
题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...
- 【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)
[BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
随机推荐
- R class of subset of matrix and data.frame
a = matrix( c(2, 4, 3, 1, 5, 7), # the data elements nrow=2, # number of rows ...
- 《操作系统_时间片轮转RR进程调度算法》
转自:https://blog.csdn.net/houchaoqun_xmu/article/details/55540250 时间片轮转RR进程调度算法 一.概念介绍和案例解析时间片轮转法 - 基 ...
- Images之base image
Create a base image Most Dockerfiles start from a parent image. If you need to completely control th ...
- MongoDB数据库的基本操作
非关系型数据库(json数据库) npm install mongoose --save 启动数据酷: mongod --config /usr/local/etc/mongod.conf 这里可以将 ...
- base64 加密原理 解密原理
假设需要加密的字符串是Jasmine 具体转换步骤: 第一步 将待转换的字符串转为一个个字符第二步 计算每一个字符对应的ASCII码十进制第三步 计算出十进制对应的二进制,若不足8位,在前面添加0进行 ...
- Python open操作文件
操作文件 # coding=utf-8 支持中文 """ China Japan France England """ f = open(& ...
- 力扣(LeetCode)1002. 查找常用字符
给定仅有小写字母组成的字符串数组 A,返回列表中的每个字符串中都显示的全部字符(包括重复字符)组成的列表.例如,如果一个字符在每个字符串中出现 3 次,但不是 4 次,则需要在最终答案中包含该字符 3 ...
- 分散的配置文件VS集中的注册表
假设有这样一个工程,是这样设计的: 1整个软件.服务被切分为 由若干独立的多道程序(多个进程/微服务): 2 这些多道程序只是“机制mechanism”,而“策略strategy”写在各自用到的配置文 ...
- centos7在upgrade的时候显示:Delta RPMs disabled because /usr/bin/applydeltarpm not installed
前面安装信息,太多,省略 总计:113 MIs this ok [y/d/N]: yDownloading packages:Delta RPMs disabled because /usr/bin/ ...
- sessionId的生成机制
目录 面试问道这个我居然不知道怎么回答,当然也是因为我确实没有研究过.下面就是百度了一篇文章后简单回答这个问题. 参考:http://www.cnblogs.com/sharpxiajun/p/339 ...