[protocol]GO enrichment analysis

   

背景:

什么是富集分析,自己可以百度。我到目前也没发现一个比较通俗易懂的介绍。直接理解为一种统计学方法就可以了。 用于查看显著性。

富集分析有很多种,最常见的是GO富集分析。也有pathway富集分析。[pathway的我目前不会啊 ::>_<:: ]

工具:

也有很多种,我这里主要是用Ontologizer (links:http://compbio.charite.de/contao/index.php/cmdlineOntologizer.html)

需要的文件:

1.gene_ontology_edit.obo (这个类似GO的库文件, links:http://www.geneontology.org/GO.downloads.ontology.shtml)

2.whole_gene_list (这是所研究物种中,包含的所有gene_list)

通过一下脚本可以从CDS文件中提取gene_list

grep "^>" sequence.fasta | tr -d ">"> sequenceHeader.list

3. sample_1_gene_list (其中一个点的gene_list)

4.最后一个也是最关键的。就是要有一个Association file .这个通过一下脚本生成

4.1需要2个文件 和一个脚本

文件1:GO_ids 文件 格式如下

gene136870 GO:0006950,GO:0005737
gene143400 0006468,GO:0005737,GO:0004674,GO:0006914,GO:0016021,GO:0015031,GO:0004714
gene144020 GO:0006941,GO:0005524,GO:0003774,GO:0005516,GO:0005737,GO:0005863
gene000620 GO:0006350,GO:0006355,GO:0007275,GO:0030528
gene144530 GO:0016020

文件2: GOIDTermIndexFile 这个可以下载到 links:http://www.geneontology.org/GO.downloads.files.shtml

脚本1:

import sys

#input the gene annotation file (inFile) and your GOID/terms index file (goFile)
#inFile is your custom annotations
#goFile is the GO IDs to GO categories index you download from the GO website
inFile = open(sys.argv[1],'r')
goFile = open(sys.argv[2],'r') #parse the GOID/terms index and store it in the dictionary, goHash
goHash = {} for line in goFile:
#skip lines that start with '!' character as they are comment headers
if line[0] != "!":
data = line.strip().split('\t')
#skip obsolete terms
if data[-1] != 'obs':
for info in data:
if info[0:3] == "GO:":
#create dictionary of term aspects
goHash[data[0]] = data[-1] #Here are some columns that the GAF format wants.
#Since Ontologizer doesn't care about this, we can just make it up
DB = 'yourOrganism'
DBRef = 'PMID:0000000'
DBEvi = 'ISO'
DBObjectType = 'gene'
DBTaxon = 'taxon:79327'
DBDate = '23022011'
DBAssignedBy = 'PFAM' #potential obselete goids that you have in your annotation
potentialObs = []

#if you specified to not print out obsolete goids, then print out the .gaf
if len(sys.argv) == 3:
print '!gaf-version: 2.0' #Loop through the GO annotation file and generate assocation lines.
for line in inFile:
data = line.strip().split('\t') #if gene has go annotations
if len(data) > 1:
#gid is the gene id, goIDs is an array of assocated GO ids
gid = data[0]
goIDs = data[1].split(',') #second column of the .gaf file that Ontologizer doesn't care about
DBID = "db." gid #third column is the name of the gene which Ontologizer does use
DBObjSym = gid #for each GO ID in the line, print out an association line
for goID in goIDs:
if goHash.has_key(goID):
DBAspect = goHash[goID]
DBObjName = 'myOrganism' DBID outArray = [DB,DBID,DBObjSym,'0',goID,DBRef,DBEvi,'0',DBAspect,'0','0',DBObjectType,DBTaxon,DBDate,DBAssignedBy]

#only print out the .gaf file if you didn't specify to print out obsolete goids.
if len(sys.argv) == 3:
print '\t'.join(outArray)
else:
potentialObs.append(goID)

#if there is a 4th argument, print out the potential obsolete list
if len(sys.argv) == 4:
print '\n'.join(set(potentialObs))

执行:

python myScript.py GO.customAnnotationFile GOIDTermIndexFile > myOrganism.gaf

以上4个文件都有了 可以执行Ontologizer了 参考:http://compbio.charite.de/contao/index.php/cmdlineOntologizer.html

java -jar Ontologizer.jar -a myOrganism.gaf -g gene_ontology_edit.obo  -s moso_target_gene.txt -p sequnecHeader.list -c Parent-Child-Union -m Westfall-Young-Single-Step -d 0.05 -r 1000

5.这个软件是可以画图的。但是需要下载软件。下载步骤如下: (as root )

        yum list available 'graphviz*'
yum install 'graphviz*'
dot -Tpng view-4hourSMinduced-Parent-Child-Westfall-Young-Single-Step.dot -oExample.png
 
 
还可以参考 http://blog.nextgenetics.net/?e=5
 


 

Most gene enrichment websites out there only allow you to find enrichments for popular model organisms using pre-established gene ontology annotations. I ran into this problem early on during my phd when confronted with having to generate enrichment data on Schmidtea mediterranea.

Software and inputs

To get custom enrichments, I used Ontologizer. The inputs for ontologizer are:

  • Gene Ontology OBO file
    A flatfile containing information on all the current GO terms and their relationship to other terms. You can get it here.
  • List of all gene ids
    If you have a .fasta file of all your genes, you can use this command to extract the gene id information:
    grep "^>" sequence.fasta | tr -d ">" > sequenceHeader.list
    
  • List of gene ids you want to find enrichment for
    The subset of all your genes that you want the enrichment for, ie. differentially expressed gene. Ontologizer can take in an entire folder of gene id lists if you set a directory as input.
  • Association file for your organism
    This is a GO Annotation File (.gaf). The specifications is detailed here. Fortunately, Ontologizer doesn't really care about most of the database information columns in the .gaf file, so you can fake most of it. To generate this file, you will have to first generate GO annotations for your genes through software like InterproScan or Blast2Go. You will also need a tab delimited index of GO IDs to GO category which you can get here.

Generating a gene association file

Assuming your GO annotations are formatted in two columns where first column is the gene id and second column is a comma separated list of your GO ids:

gene136870 GO:0006950,GO:0005737
gene143400 GO:0016020,GO:0005524,GO:0006468,GO:0005737,GO:0004674,GO:0006914,GO:0016021,GO:0015031,GO:0004714
gene144020 GO:0003779,GO:0006941,GO:0005524,GO:0003774,GO:0005516,GO:0005737,GO:0005863
gene000620 GO:0005634,GO:0003677,GO:0030154,GO:0006350,GO:0006355,GO:0007275,GO:0030528
gene144530 GO:0016020

Here is the python script to generate the association file with comments:

import sys

#input the gene annotation file (inFile) and your GOID/terms index file (goFile)
#inFile is your custom annotations
#goFile is the GO IDs to GO categories index you download from the GO website
inFile = open(sys.argv[1],'r')
goFile = open(sys.argv[2],'r') #parse the GOID/terms index and store it in the dictionary, goHash
goHash = {} for line in goFile:
#skip lines that start with '!' character as they are comment headers
if line[0] != "!":
data = line.strip().split('\t')
#skip obsolete terms
if data[-1] != 'obs':
for info in data:
if info[0:3] == "GO:":
#create dictionary of term aspects
goHash[data[0]] = data[-1] #Here are some columns that the GAF format wants.
#Since Ontologizer doesn't care about this, we can just make it up
DB = 'yourOrganism'
DBRef = 'PMID:0000000'
DBEvi = 'ISO'
DBObjectType = 'gene'
DBTaxon = 'taxon:79327'
DBDate = '23022011'
DBAssignedBy = 'PFAM' #potential obselete goids that you have in your annotation
potentialObs = []

#if you specified to not print out obsolete goids, then print out the .gaf
if len(sys.argv) == 3:
print '!gaf-version: 2.0' #Loop through the GO annotation file and generate assocation lines.
for line in inFile:
data = line.strip().split('\t') #if gene has go annotations
if len(data) > 1:
#gid is the gene id, goIDs is an array of assocated GO ids
gid = data[0]
goIDs = data[1].split(',') #second column of the .gaf file that Ontologizer doesn't care about
DBID = "db." gid #third column is the name of the gene which Ontologizer does use
DBObjSym = gid #for each GO ID in the line, print out an association line
for goID in goIDs:
if goHash.has_key(goID):
DBAspect = goHash[goID]
DBObjName = 'myOrganism' DBID outArray = [DB,DBID,DBObjSym,'0',goID,DBRef,DBEvi,'0',DBAspect,'0','0',DBObjectType,DBTaxon,DBDate,DBAssignedBy]

#only print out the .gaf file if you didn't specify to print out obsolete goids.
if len(sys.argv) == 3:
print '\t'.join(outArray)
else:
potentialObs.append(goID)

#if there is a 4th argument, print out the potential obsolete list
if len(sys.argv) == 4:
print '\n'.join(set(potentialObs))

Putting it all together

Make sure you have your custom GO annotation file generated in the format shown above and the GOID to term aspect index file from here (text file version of 'Terms, IDs, secondary IDs, obsoletes'). Save this script and use it by:

python myScript.py GO.customAnnotationFile GOIDTermIndexFile > myOrganism.gaf

If you want to check if any of your annotation is potentially deprecated or obsolete, use this command:

python myScript.py GO.customAnnotationFile GOIDTermIndexFile y > potentialDeprecated.goids

Now that you have the Gene Assocation File, you can use Ontologizer by:

java -jar Ontologizer.jar -a myOrganism.gaf -g gene_ontology.1_2.obo -o out -p myOrganism.ids -s in

The parameters used are:

  • a - the gaf file
  • g - the obo file
  • o - the output directory
  • p - the list of all gene ids
  • s - the input directory/file of gene subsets

The enrichments with all relevent statistics will be generated per input gene list in a tab delimited file.

[protocol]GO enrichment analysis的更多相关文章

  1. GSEA - Gene set enrichment analysis 基因集富集 | ORA - Over-Representation Analysis 分析原理与应用

    RNA-seq是利器,大部分做实验的老板手下都有大量转录组数据,所以RNA-seq的分析需求应该是很大的(大部分的生信从业人员应该都差不多要沾边吧). 普通的转录组套路并不多,差异表达基因.富集分析. ...

  2. 功能的显著性分析——GO Enrichment Analysis

      Gene Ontology(GO)是基因功能国际标准分类体系.GO富集分析是对差异基因等按GO分类,并对分类结果进行基于离散分布的显著性分析.错判率分析.富集度分析,得到与实验目的有显著联系的.低 ...

  3. 32、Differential Gene Expression using RNA-Seq (Workflow)

    转载: https://github.com/twbattaglia/RNAseq-workflow Introduction RNAseq is becoming the one of the mo ...

  4. TLS1.3&TLS1.2形式化分析

    本博客是对下面博客连接上的原文进行梳理+自己在其他方面资料做个整理 https://blog.csdn.net/andylau00j/article/details/79269499 https:// ...

  5. (转)基因芯片数据GO和KEGG功能分析

    随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(Postgenome Era),向基因的功能及基因的多样性倾斜.通过 ...

  6. 利用GSEA对基因表达数据做富集分析

      image Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a p ...

  7. HOMER | MEME | 转录因子的靶基因预测

    Finding Enriched Motifs in Genomic Regions (findMotifsGenome.pl) 在指定区域做motif enrichment,大大降低了假阳性. ME ...

  8. 文献笔记:Genome-wide associations for birth weight and correlations with adult disease

    该文献纳入了EGG(Early Growth Genetics Consortium)和UK biobank两大数据库,分为欧洲祖先和非欧洲祖先群体.这两个数据用到的样本量分别如下: Early Gr ...

  9. 微生物组学数据分析工具综述 | 16S+宏基因组+宏病毒组+宏转录组--转载

    转载:https://mp.weixin.qq.com/s/xsL9GuLs7b3nRF8VeRtinQ 建立在高通量测序基础上的微生物群落研究,当前主要有三大类:基于16S/18S/ITS等扩增子做 ...

随机推荐

  1. 【数据库】left join(左关联)、right join(右关联)、inner join(自关联)的区别

    left join(左关联).right join(右关联).inner join(自关联)的区别 用一张图说明三者的区别: 总结: left join(左联接) 返回包括左表中的所有记录和右表中关联 ...

  2. python的前后端分离(一):django+原生js实现get请求

    一.django新建项目和应用 参考:https://segmentfault.com/a/1190000016049962#articleHeader2 1.创建项目 django-admin st ...

  3. MongoDB pymongo模块

    安装pymongo模块 pip install pymongo 连接mongodb代码,生成pymongo对象,传入连接服务器相关参数 ip 端口 如果使用指定的账户登录,设置要登录的账户和密码,然后 ...

  4. vim常用指令整理小结

    启动Vim后,默认是在 Normal 模式下,但是我们有时不知道是在编辑模式还是normal模式,按ESC键就可以返回normal模式.因为所有的命令都需要在Normal模式下使用,所以建议多按几下E ...

  5. composer安装其实可以很简单 两行命令就解决了

    最近接了一个cakephp项目,就想着用composer安装实施,因为Composer 可以方便地帮你安装项目中声明所依赖的外部工具库(libraries).之前没有接触过,相对比较陌生,但是相信ph ...

  6. 利用Linux的硬连接删除MySQL大文件

    利用Linux的硬连接删除MySQL大文件 http://blog.csdn.net/wxliu1989/article/details/22895201 原理:硬链接基础当多个文件共同指向同一ino ...

  7. 20180318 一个VS2015运行DataTable问题

    1. 环境VS 2015 社区版,使用"DataTable" 为了即使查看DataTable中的数据,点击放大镜 ,加载提示错误. 解决方案: 第一步: 第二步: “选项”  -- ...

  8. 香港低价linux虚拟主机,

    https://www.sugarhosts.com/zh-cn/hosting/shared-web-hosting Shared Baby 36 个月 ¥ 26.99 19 99 · / 月 续费 ...

  9. 【SVM】周志华

    一.书籍(121-139)

  10. [js]this和call.call

    JavaScript 的一大特点是,函数存在「定义时上下文」和「运行时上下文」以及「上下文是可以改变的」这样的概念. https://www.cnblogs.com/coco1s/p/4833199. ...