To the Max

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 44723 Accepted: 23679

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

is in the lower left corner:

9 2

-4 1

-1 8

and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4

0 -2 -7 0 9 2 -6 2

-4 1 -4 1 -1

8 0 -2

Sample Output

15

这道题目是hdu1003 的升级版,HDU 1003,是一维数组最长子段和的问题,这个题目扩展到二维,思路就是把二维转换成一维,

先求第一行最大子段和,再求第一行跟第二行合起来的最大子段和,再求第一行到第三行合起来的最大值,实际上就是把二维数组转换成一维的了,

#include <iostream>
#include <math.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h> using namespace std;
int a[105][105];
int n;
int dp[105];
int b[105];
int sum;
int main()
{
while(scanf("%d",&n)!=EOF)
{
sum=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
}
}
for(int i=1;i<=n;i++)
{
memset(b,0,sizeof(b));
memset(dp,0,sizeof(dp));
for(int k=i;k<=n;k++)
{
for(int j=1;j<=n;j++)
{
b[j]+=a[k][j];
if(dp[j-1]>=0)
dp[j]=dp[j-1]+b[j];
else
dp[j]=b[j];
if(sum<dp[j])
sum=dp[j];
}
} }
printf("%d\n",sum); }
return 0;
}

POJ--1050--To the Max(线性动规,最大子矩阵和)的更多相关文章

  1. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  2. HOJ 2156 &POJ 2978 Colored stones(线性动规)

    Colored stones Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1759 Accepted: 829 Descrip ...

  3. POJ-1958 Strange Towers of Hanoi(线性动规)

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...

  4. POJ 1050 To the Max 最大子矩阵和(二维的最大字段和)

    传送门: http://poj.org/problem?id=1050 To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  5. POJ-1953 World Cup Noise(线性动规)

    World Cup Noise Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16374 Accepted: 8097 Desc ...

  6. poj 1050 To the Max(最大子矩阵之和)

    http://poj.org/problem?id=1050 我们已经知道求最大子段和的dp算法 参考here  也可参考编程之美有关最大子矩阵和部分. 然后将这个扩大到二维就是这道题.顺便说一下,有 ...

  7. POJ 1050 To the Max 暴力,基础知识 难度:0

    http://poj.org/problem?id=1050 设sum[i][j]为从(1,1)到(i,j)的矩形中所有数字之和 首先处理出sum[i][j],此时左上角为(x1,y1),右下角为(x ...

  8. POJ 1050 To the Max -- 动态规划

    题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and negati ...

  9. poj 1050 To the Max (简单dp)

    题目链接:http://poj.org/problem?id=1050 #include<cstdio> #include<cstring> #include<iostr ...

随机推荐

  1. 运动规划 (Motion Planning): MoveIt! 与 OMPL---44

    原创博文:转载请标明出处:http://www.cnblogs.com/zxouxuewei 最近有不少人询问有关MoveIt!与OMPL相关的话题,但是大部分问题都集中于XXX功能怎么实现,XXX错 ...

  2. 解决win10休眠后无法唤醒

    在控制面板-电源选项-编辑计划设置-高级电源设置中把"睡眠"的选项中休眠调整为从不,"电源按键和盖子"选项中也都设为睡眠,这样使得无论你是使用电池还是电源,系统 ...

  3. iOS 图片剪切和压缩的几个方法

    // 图片剪切 - (UIImage*)clipImageWithImage:(UIImage*)image inRect:(CGRect)rect {    CGImageRef imageRef ...

  4. Echarts调整图表上下左右的间距,Echarts调整柱状图左右的间距

    Echarts调整图表上下左右的间距,Echarts调整柱状图左右的间距 >>>>>>>>>>>>>>>> ...

  5. Redis存读取数据

    这一节演示下载.NET中怎样使用Redis存储数据.在.net中比较常用的客户端类库是ServiceStack,看下通过servicestack怎样存储数据. DLL下载:https://github ...

  6. 系统头文件cmath,cstdlib报错

    >C:\Program Files (x86)\Microsoft Visual Studio\\Community\VC\Tools\MSVC\\include\cstdlib(): erro ...

  7. 导入贴图操作:处理贴图MaxSize和Format

    using UnityEngine; using System.Collections; using UnityEditor; public class ImportModflyTextures : ...

  8. 国内CDN加速现状

    什么是CDN CDN的全称是Content Delivery Network,即内容分发网络.是位于网络层与应用层之间的网络应用,其目的是通过在现有的Internet中增加一层新的网络架构,将网站的内 ...

  9. Python中字符串的intern机制

    intern机制: 字符串类型作为Python中最常用的数据类型之一,Python解释器为了提高字符串使用的效率和使用性能,做了很多优化,例如:Python解释器中使用了 intern(字符串驻留)的 ...

  10. angular-file-upload+struts的使用

    参考帖子 http://www.cnblogs.com/wangzun/p/6099884.html http://www.cnblogs.com/highriver/archive/2011/06/ ...