OpenCV-Python 姿态估计 | 五十
目标
在本章中
- 我们将学习利用calib3d模块在图像中创建一些3D效果。
基础
这将是一小部分。在上一次相机校准的会话中,你发现了相机矩阵,失真系数等。给定图案图像,我们可以利用以上信息来计算其姿势或物体在空间中的位置,例如其旋转方式, 对于平面物体,我们可以假设Z = 0,这样,问题就变成了如何将相机放置在空间中以查看图案图像。 因此,如果我们知道对象在空间中的位置,则可以在其中绘制一些2D图以模拟3D效果。 让我们看看如何做。
我们的问题是,我们想在棋盘的第一个角上绘制3D坐标轴(X,Y,Z)。 X轴为蓝色,Y轴为绿色,Z轴为红色。 因此,实际上Z轴应该感觉像它垂直于我们的棋盘平面。
首先,让我们从先前的校准结果中加载相机矩阵和失真系数。
import numpy as np
import cv2 as cv
import glob
# 加载先前保存的数据
with np.load('B.npz') as X:
mtx, dist, _, _ = [X[i] for i in ('mtx','dist','rvecs','tvecs')]
现在让我们创建一个函数,绘制,该函数将棋盘上的角(使用cv.findChessboardCorners()获得)和轴点绘制为3D轴。
def draw(img, corners, imgpts):
corner = tuple(corners[0].ravel())
img = cv.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5)
img = cv.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5)
img = cv.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5)
return img
然后,与前面的情况一样,我们创建终止条件,对象点(棋盘上角的3D点)和轴点。 轴点是3D空间中用于绘制轴的点。 我们绘制长度为3的轴(由于我们根据该棋盘尺寸进行了校准,因此单位将以国际象棋正方形的尺寸为单位)。因此我们的X轴从(0,0,0)绘制为(3,0,0),因此对于Y轴。 对于Z轴,从(0,0,0)绘制为(0,0,-3)。 负号表示它被拉向相机。
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3)
现在,像往常一样,我们加载每个图像。搜索7x6网格。如果找到,我们将使用子角像素对其进行优化。然后使用函数cv.solvePnPRansac()计算旋转和平移。一旦有了这些变换矩阵,就可以使用它们将轴点投影到图像平面上。简而言之,我们在图像平面上找到与3D空间中(3,0,0),(0,3,0),(0,0,3)中的每一个相对应的点。一旦获得它们,就可以使用draw()函数从第一个角到这些点中的每个点绘制线条。完毕!!!
for fname in glob.glob('left*.jpg'):
img = cv.imread(fname)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret, corners = cv.findChessboardCorners(gray, (7,6),None)
if ret == True:
corners2 = cv.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
# 找到旋转和平移矢量。
ret,rvecs, tvecs = cv.solvePnP(objp, corners2, mtx, dist)
# 将3D点投影到图像平面
imgpts, jac = cv.projectPoints(axis, rvecs, tvecs, mtx, dist)
img = draw(img,corners2,imgpts)
cv.imshow('img',img)
k = cv.waitKey(0) & 0xFF
if k == ord('s'):
cv.imwrite(fname[:6]+'.png', img)
cv.destroyAllWindows()
请参阅下面的一些结果。请注意,每个轴长3个long单位。

绘制立方体
如果要绘制立方体,请如下修改draw()函数和轴点。
修改后的draw()函数:
def draw(img, corners, imgpts):
imgpts = np.int32(imgpts).reshape(-1,2)
# 用绿色绘制底层
img = cv.drawContours(img, [imgpts[:4]],-1,(0,255,0),-3)
# 用蓝色绘制高
for i,j in zip(range(4),range(4,8)):
img = cv.line(img, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
# 用红色绘制顶层
img = cv.drawContours(img, [imgpts[4:]],-1,(0,0,255),3)
return img
修改的轴点。它们是3D空间中多维数据集的8个角:
axis = np.float32([[0,0,0], [0,3,0], [3,3,0], [3,0,0], [0,0,-3],[0,3,-3],[3,3,-3],[3,0,-3] ])
查看以下结果:

如果您对图形,增强现实等感兴趣,则可以使用OpenGL渲染更复杂的图形。
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
OpenCV中文官方文档:
http://woshicver.com/
OpenCV-Python 姿态估计 | 五十的更多相关文章
- OpenCV开发笔记(五十五):红胖子8分钟带你深入了解Haar、LBP特征以及级联分类器识别过程(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(五十六):红胖子8分钟带你深入了解多种图形拟合逼近轮廓(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- python学习第五十四天hashlib模块的使用
hash算法 hash也做散列,也称为哈希,主要用于信息安全领域中加密算法,hash就是找一种数据内容和数据存放地址直接的映射关系. md5算法 md5讯息算法,广泛使用密码函数 md5算法的特点 1 ...
- python学习第五十天shutil模块的用法
什么shutil模块,就是对高级的文件,文件夹,压缩包进行处理的模块,下面简单讲述其用法. 文件和文件夹的操作 拷贝文件内容 import shutil shutil.copyfileobj(open ...
- 第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中
第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详 ...
- 第三百五十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)介绍以及安装
第三百五十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)介绍以及安装 elasticsearch(搜索引擎)介绍 ElasticSearch是一个基于 ...
- 第三百五十六节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy分布式爬虫要点
第三百五十六节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy分布式爬虫要点 1.分布式爬虫原理 2.分布式爬虫优点 3.分布式爬虫需要解决的问题
- 第三百五十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy信号详解
第三百五十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy信号详解 信号一般使用信号分发器dispatcher.connect(),来设置信号,和信号触发函数,当捕获到信号时执行 ...
- 第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—数据收集(Stats Collection)
第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—数据收集(Stats Collection) Scrapy提供了方便的收集数据的机制.数据以key/value方式存储,值大多是计数 ...
随机推荐
- Ta说:2016微软亚洲研究院第二届博士生论坛
"聚合多元人才创造无尽可能,让每一位优秀博士生得到发声成长机会"可以说是这次微软亚洲研究院博士生论坛最好的归纳了.自去年首次举办以来,这项旨在助力青年研究者成长的项目迅速得到了 ...
- 【HI AI:人机协同 赋能未来系列】计算机是最好的左脑
AI:人机协同 赋能未来系列]计算机是最好的左脑"> 编者按: 计算机领域的热点总是在不断更替,从大数据到云计算再到人工智能,这些热点的背后离不开专家学者们在这些领域一点一滴聚沙成塔的 ...
- 在Linux上显示正在运行的进程的线程ID
在Linux上显示正在运行的进程的线程ID 在上Linux," ps -T"可以显示正在运行的进程的线程信息: # ps -T 2739 PID SPID TTY STAT TIM ...
- PhaserJS 3 屏幕适配时的小坑 -- JavaScript Html5 游戏开发
巨坑:在config内不要把 width 设为 window.innnerWidth在config内不要把 width 设为 window.innnerWidth在config内不要把 width 设 ...
- 简单说 JavaScript中的事件委托(下)
说明 上次我们说了一些,关于 JavaScript中事件委托的 基础知识,这次我们继续来看. 解释 先来一段代码 <!doctype html> <html lang="e ...
- H5多列布局
多列布局 基本概念 1.多列布局类似报纸或杂志中的排版方式,上要用以控制大篇幅文本. 2.跨列属性可以控制横跨列的数量 /*列数*/ -webkit-column-count: 3; /*分割线*/ ...
- React拖拽组件Dragact V0.1.7:教你优化React组件性能与手感
仓库地址:Dragact手感丝滑的拖拽布局组件 预览地址:支持手机端噢- 上回我们说到,Dragact组件已经进行了一系列的性能优化,然而面对大量数据的时候,依旧比较吃力,让我们来看看,优化之前的Dr ...
- Java 读取Word中的脚注、尾注
本文介绍读取Word中的脚注及尾注的方法,添加脚注.尾注可以参考这篇文章. 注:本文使用了Word类库(Free Spire.Doc for Java 免费版)来读取,获取该类库可通过官网下载,并解压 ...
- 16 搭建Spring Data JPA的开发环境
使用Spring Data JPA,需要整合Spring与Spring Data JPA,并且需要提供JPA的服务提供者hibernate,所以需要导入spring相关坐标,hibernate坐标,数 ...
- 手写Promise原理
我的promise能实现什么? 1:解决回调地狱,实现异步 2:可以链式调用,可以嵌套调用 3:有等待态到成功态的方法,有等待态到失败态的方法 4:可以衍生出周边的方法,如Promise.resolv ...