目标

在本章中

  • 我们将学习利用calib3d模块在图像中创建一些3D效果。

基础

这将是一小部分。在上一次相机校准的会话中,你发现了相机矩阵,失真系数等。给定图案图像,我们可以利用以上信息来计算其姿势或物体在空间中的位置,例如其旋转方式, 对于平面物体,我们可以假设Z = 0,这样,问题就变成了如何将相机放置在空间中以查看图案图像。 因此,如果我们知道对象在空间中的位置,则可以在其中绘制一些2D图以模拟3D效果。 让我们看看如何做。

我们的问题是,我们想在棋盘的第一个角上绘制3D坐标轴(X,Y,Z)。 X轴为蓝色,Y轴为绿色,Z轴为红色。 因此,实际上Z轴应该感觉像它垂直于我们的棋盘平面。

首先,让我们从先前的校准结果中加载相机矩阵和失真系数。

import numpy as np
import cv2 as cv
import glob
# 加载先前保存的数据
with np.load('B.npz') as X:
mtx, dist, _, _ = [X[i] for i in ('mtx','dist','rvecs','tvecs')]

现在让我们创建一个函数,绘制,该函数将棋盘上的角(使用cv.findChessboardCorners()获得)和轴点绘制为3D轴。

def draw(img, corners, imgpts):
corner = tuple(corners[0].ravel())
img = cv.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5)
img = cv.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5)
img = cv.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5)
return img

然后,与前面的情况一样,我们创建终止条件,对象点(棋盘上角的3D点)和轴点。 轴点是3D空间中用于绘制轴的点。 我们绘制长度为3的轴(由于我们根据该棋盘尺寸进行了校准,因此单位将以国际象棋正方形的尺寸为单位)。因此我们的X轴从(0,0,0)绘制为(3,0,0),因此对于Y轴。 对于Z轴,从(0,0,0)绘制为(0,0,-3)。 负号表示它被拉向相机。

criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3)

现在,像往常一样,我们加载每个图像。搜索7x6网格。如果找到,我们将使用子角像素对其进行优化。然后使用函数cv.solvePnPRansac()计算旋转和平移。一旦有了这些变换矩阵,就可以使用它们将轴点投影到图像平面上。简而言之,我们在图像平面上找到与3D空间中(3,0,0),(0,3,0),(0,0,3)中的每一个相对应的点。一旦获得它们,就可以使用draw()函数从第一个角到这些点中的每个点绘制线条。完毕!!!

for fname in glob.glob('left*.jpg'):
img = cv.imread(fname)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret, corners = cv.findChessboardCorners(gray, (7,6),None)
if ret == True:
corners2 = cv.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
# 找到旋转和平移矢量。
ret,rvecs, tvecs = cv.solvePnP(objp, corners2, mtx, dist)
# 将3D点投影到图像平面
imgpts, jac = cv.projectPoints(axis, rvecs, tvecs, mtx, dist)
img = draw(img,corners2,imgpts)
cv.imshow('img',img)
k = cv.waitKey(0) & 0xFF
if k == ord('s'):
cv.imwrite(fname[:6]+'.png', img)
cv.destroyAllWindows()

请参阅下面的一些结果。请注意,每个轴长3个long单位。

绘制立方体

如果要绘制立方体,请如下修改draw()函数和轴点。

修改后的draw()函数:

def draw(img, corners, imgpts):
imgpts = np.int32(imgpts).reshape(-1,2)
# 用绿色绘制底层
img = cv.drawContours(img, [imgpts[:4]],-1,(0,255,0),-3)
# 用蓝色绘制高
for i,j in zip(range(4),range(4,8)):
img = cv.line(img, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
# 用红色绘制顶层
img = cv.drawContours(img, [imgpts[4:]],-1,(0,0,255),3)
return img

修改的轴点。它们是3D空间中多维数据集的8个角:

axis = np.float32([[0,0,0], [0,3,0], [3,3,0], [3,0,0],                    [0,0,-3],[0,3,-3],[3,3,-3],[3,0,-3] ])

查看以下结果:

如果您对图形,增强现实等感兴趣,则可以使用OpenGL渲染更复杂的图形。

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

OpenCV中文官方文档:

http://woshicver.com/

OpenCV-Python 姿态估计 | 五十的更多相关文章

  1. OpenCV开发笔记(五十五):红胖子8分钟带你深入了解Haar、LBP特征以及级联分类器识别过程(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  2. OpenCV开发笔记(五十六):红胖子8分钟带你深入了解多种图形拟合逼近轮廓(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  3. python学习第五十四天hashlib模块的使用

    hash算法 hash也做散列,也称为哈希,主要用于信息安全领域中加密算法,hash就是找一种数据内容和数据存放地址直接的映射关系. md5算法 md5讯息算法,广泛使用密码函数 md5算法的特点 1 ...

  4. python学习第五十天shutil模块的用法

    什么shutil模块,就是对高级的文件,文件夹,压缩包进行处理的模块,下面简单讲述其用法. 文件和文件夹的操作 拷贝文件内容 import shutil shutil.copyfileobj(open ...

  5. 第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中

    第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详 ...

  6. 第三百五十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)介绍以及安装

    第三百五十九节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)介绍以及安装 elasticsearch(搜索引擎)介绍 ElasticSearch是一个基于 ...

  7. 第三百五十六节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy分布式爬虫要点

    第三百五十六节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy分布式爬虫要点 1.分布式爬虫原理 2.分布式爬虫优点 3.分布式爬虫需要解决的问题

  8. 第三百五十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy信号详解

    第三百五十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy信号详解 信号一般使用信号分发器dispatcher.connect(),来设置信号,和信号触发函数,当捕获到信号时执行 ...

  9. 第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—数据收集(Stats Collection)

    第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—数据收集(Stats Collection) Scrapy提供了方便的收集数据的机制.数据以key/value方式存储,值大多是计数 ...

随机推荐

  1. SAT考试里最难的数学题? · 三只猫的温暖

    问题 今天无意中在Quora上看到有人贴出来一道号称是SAT里最难的一道数学题,一下子勾起了我的兴趣.于是拿起笔来写写画画,花了差不多十五分钟搞定.觉得有点意思,决定把解题过程记下来.原帖的图太小,我 ...

  2. 恭喜你,Get到一份 正则表达式 食用指南

    先赞后看,养成习惯 前言 正则表达式 正则表达式: 定义一个搜索模式的字符串. 正则表达式可以用于搜索.编辑和操作文本. 正则对文本的分析或修改过程为:首先正则表达式应用的是文本字符串(text/st ...

  3. C++扬帆远航——16(猜数字)

    /* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:guessnum.cpp * 作者:常轩 * 微信公众号:Wor ...

  4. 通读Python官方文档之cgitb

    cgitb CGI脚本异常管理 源代码:Lib/cgitb.py cgitb模块为Python脚本提供了一个特殊的异常管理器.名字有点误导人,它最初设计是为了以HTML格式展示cgi脚本的大量异常信息 ...

  5. React Native 在 Airbnb(译文)

    在Android,iOS,Web和跨平台框架的横向对比中,React Native本身是一个相对较新且快速开发移动的平台.两年后,我们可以肯定地说React Native在很多方面都是革命性的.这是移 ...

  6. echarts实现饼图及横向柱状图的绘制

    项目中需要绘制饼图,因此简单学习了下echarts的基本使用.head中引入js文件: <script src="/static/frame/echarts/echarts.min.j ...

  7. 使用JS检测自定义协议是否存在

    [该博客是拼接他人的,原因我们这边PC的开发人员问我,有没有关于js某个对象直接能检测手机或者电脑的自定义协议的,我上网搜了下,貌似移动端的解决比较多] 最终解决方案:还是需要github上面大神写的 ...

  8. 等宽字体的妙用-loading 点点点动画

    原理 ch等宽字体 + text-indent 动画负缩进 显示效果如 loading . loading .. loading ... loading . loading .. loading .. ...

  9. D2T1服务器需求——毒?瘤题(并不是

    这题我第一眼居然差点错了\(OTZ\) 然后写了线段树,还写挂了-- 写好了\(query\)操作,发现似乎不需要区间查询,然后又删掉-- 看着这熟悉的操作,似乎在哪里见过-- 然后我莫名其妙把一个\ ...

  10. C# RSACryptoServiceProvider 加密解密 RSA 加密解密

    什么是RSA:RSA公开密钥密码体制.所谓的公开密钥密码体制就是使用不同的加密密钥与解密密钥,是一种“由已知加密密钥 推导出 解密密钥在计算上是不可行的”密码体制. 下附代码,在控制台中粘贴在启动类即 ...