计蒜客 - Fantastic Graph
题目链接:https://nanti.jisuanke.com/t/31447
知识点: 最大流
题目大意:
给定一个二分图,左边有 $N$ 个点,右边有 $M$ 个点,给出 $K$ 条边。问是否能从这 $K$ 条边中找出若干条边使得每个点的度数都在 $[L,R]$ 中。
$1 \le N \le 2000, 0 \le M \le 2000, 0 \le K \le 6000, 0 \le L,R \le 300$
解题思路:
不难想到这是一个无源无汇有容量下界网络的可行流问题。
先建一个小源点 $s$ 和小汇点 $t$,一个大源点 $ss$ 和一个大汇点 $st$。从 $st$ 连一条边到 $ss$,从 $ss$ 连一条边到 $s$,从 $t$ 连一条边到 $st$,容量均为 $INF$。 然后将题目给定的边连进网络图中,容量均为 $1$。
对于 $s$ 连向左边每一点(设为 $u$)的边,需要限制它们的流量下界为 $L$,上界为 $R$,做法是从 $s$ 向 $u$ 连一条容量为 $R-L$ 的边,从 $ss$ 向 $u$ 连一条容量为 $L$ 的边,再从 $s$ 连一条容量为 $L$ 的边到大汇点。如果所有容量为 $L$ 的附加边都满流,则证明有可行流,输出"Yes"。
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL; const int MAXN = ;//点数的最大值
const int MAXM = ;//边数的最大值
const int INF = 0x3f3f3f3f;
struct Edge
{
int to,next,cap,flow;
}edge[MAXM];//注意是MAXM
int tol;
int head[MAXN];
int gap[MAXN],dep[MAXN],cur[MAXN];
void init(){
tol = ;
memset(head,-,sizeof(head));
}
void addedge(int u,int v,int w,int rw = ){
edge[tol].to = v; edge[tol].cap = w; edge[tol].flow = ;
edge[tol].next = head[u]; head[u] = tol++;
edge[tol].to = u; edge[tol].cap = rw; edge[tol].flow = ;
edge[tol].next = head[v]; head[v] = tol++;
}
int Q[MAXN];
void BFS(int start,int end){
memset(dep,-,sizeof(dep));
memset(gap,,sizeof(gap));
gap[] = ;
int front = , rear = ;
dep[end] = ;
Q[rear++] = end;
while(front != rear){
int u = Q[front++];
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(dep[v] != -)continue;
Q[rear++] = v;
dep[v] = dep[u] + ;
gap[dep[v]]++;
}
}
}
int S[MAXN];
int sap(int start,int end,int N){
BFS(start,end);
memcpy(cur,head,sizeof(head));
int top = ;
int u = start;
int ans = ;
while(dep[start] < N){
if(u == end){
int Min = INF;
int inser;
for(int i = ;i < top;i++)
if(Min > edge[S[i]].cap - edge[S[i]].flow){
Min = edge[S[i]].cap - edge[S[i]].flow;
inser = i;
}
for(int i = ;i < top;i++){
edge[S[i]].flow += Min;
edge[S[i]^].flow -= Min;
}
ans += Min;
top = inser;
u = edge[S[top]^].to;
continue;
}
bool flag = false;
int v;
for(int i = cur[u]; i != -; i = edge[i].next){
v = edge[i].to;
if(edge[i].cap - edge[i].flow && dep[v]+ == dep[u]){
flag = true;
cur[u] = i;
break;
}
}
if(flag){
S[top++] = cur[u];
u = v;
continue;
}
int Min = N;
for(int i = head[u]; i != -; i = edge[i].next)
if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min){
Min = dep[edge[i].to];
cur[u] = i;
}
gap[dep[u]]--;
if(!gap[dep[u]])return ans;
dep[u] = Min + ;
gap[dep[u]]++;
if(u != start)u = edge[S[--top]^].to;
}
return ans;
}
int rec[MAXM<<],cnt;
int main(){
int N,M,K,kase=;
while(~scanf("%d%d%d",&N,&M,&K)){
int L,R,cnt=;
scanf("%d%d",&L,&R);
init();
int s=N+M+,t=N+M+,ss=N+M+,st=N+M+;
addedge(st,ss,INF);
for(int i=;i<K;i++){
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v+N,);
}
for(int i=;i<=N;i++){
rec[cnt++]=tol;
addedge(ss,i,L);
rec[cnt++]=tol;
addedge(s,st,L);
addedge(s,i,R-L);
}
for(int i=;i<=M;i++){
rec[cnt++]=tol;
addedge(ss,t,L);
rec[cnt++]=tol;
addedge(i+N,st,L);
addedge(i+N,t,R-L);
}
addedge(ss,s,INF);
addedge(t,st,INF);
sap(ss,st,N+M+);
LL tot=;
for(int i=;i<cnt;i++) tot+=edge[rec[i]].flow;
printf("Case %d: ",kase++);
if(tot==1ll*L*cnt) puts("Yes");
else puts("No");
} return ;
}
计蒜客 - Fantastic Graph的更多相关文章
- 计蒜客 作弊揭发者(string的应用)
鉴于我市拥堵的交通状况,市政交管部门经过听证决定在道路两侧安置自动停车收费系统.当车辆驶入车位,系统会通过配有的摄像头拍摄车辆画面,通过识别车牌上的数字.字母序列识别车牌,通过连接车管所车辆信息数据库 ...
- 计蒜客的一道题dfs
这是我无聊时在计蒜客发现的一道题. 题意: 蒜头君有一天闲来无事和小萌一起玩游戏,游戏的内容是这样的:他们不知道从哪里找到了N根不同长度的木棍, 看谁能猜出这些木棍一共能拼出多少个不同的不等边三角形. ...
- 计蒜客模拟赛5 D2T1 成绩统计
又到了一年一度的新生入学季了,清华和北大的计算机系同学都参加了同一场开学考试(因为两校兄弟情谊深厚嘛,来一场联考还是很正常的). 不幸的是,正当老师要统计大家的成绩时,世界上的所有计算机全部瘫痪了. ...
- 计蒜客 等边三角形 dfs
题目: https://www.jisuanke.com/course/2291/182238 思路: 1.dfs(int a,int b,int c,int index)//a,b,c三条边的边长, ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
- 计蒜客 买书 dfs
题目: https://www.jisuanke.com/course/2291/182236 思路: 递归解决,从第一本书开始,每本书都有两种选择: //index是book里面每本书价格的下标, ...
- 计蒜客:Entertainment Box
Ada, Bertrand and Charles often argue over which TV shows to watch, and to avoid some of their fight ...
- 爬虫acm比赛成绩(多页成绩整合在一起、获取复制不了的数据)(hihocoder、计蒜客)
https://github.com/congmingyige/web-crawler_rank-of-competition-in-JiSuanKe-and-hihocoder 1. 计蒜客(获取复 ...
- 计蒜客 31436 - 提高水平 - [状压DP]
题目链接:https://nanti.jisuanke.com/t/31436 作为一名车手,为了提高自身的姿势水平,平时的练习是必不可少的.小 J 每天的训练包含 $N$ 个训练项目,他会按照某个顺 ...
随机推荐
- flask学习笔记(二)
一.视图函数的传参方式 修改前: 目标: 传参方式改成 途径: 通过request获取参数 注意:args并不是地点类型,而是dict的一个子类,如图: immutable意思是不可变 不可变的字典转 ...
- FreeRTOS-Qemu 实现三任务同步通信机制以及API信息
1. 本次作业的考察要点: 作业地址:github.com/HustWolfzzb-Git/GCC/GDB/QEMU等工具的使用.FreeRTOS多任务同步和通信机制的掌握. 2. 编程作业: 在gi ...
- 详解如何使用gulp实现项目在浏览器中的自动刷新
情况描述: 我们很容易遇到这样一种情况: 我们并不是一开始就规划好了整个项目,比如可能接手别人的项目或者工程已经手动创建好了,现在要想利用gulp来实现浏览器自动刷新,那么如何做呢? 其实非常简单,本 ...
- python 多进程处理 multiprocessing模块
前提: 有时候一个用一个进程处理一个列表中的每个元素(每个元素要传递到一个函数中进行处理),这个时候就要用多进程处理 1 现场案例: 我有一个[ip1,ip2,ip3,.......]这样的列表,我要 ...
- 树上倍增法求LCA
我们找的是任意两个结点的最近公共祖先, 那么我们可以考虑这么两种种情况: 1.两结点的深度相同. 2.两结点深度不同. 第一步都要转化为情况1,这种可处理的情况. 先不考虑其他, 我们思考这么一个问题 ...
- spark系列-7、spark调优
官网说明:http://spark.apache.org/docs/2.1.1/tuning.html#data-serialization 一.JVM调优 1.1.Java虚拟机垃圾回收调优的背景 ...
- 用Visual Studio2019自定义项目模板
项目模板简介 众所周知,在我们使用VS新建项目时,都需要选择一个项目模板,如下图: 我们选择完项目模板进行创建,创建完成之后,可以发现项目中已经包含了一些基础的文件.例如MVC: 可以看到,MVC项目 ...
- 【matlab 基础篇 01】快速开始第一个程序(详细图文+文末资源)
快速入门matlab,系统地整理一遍,如何你和我一样是一个新手,那么此文很适合你: 文章目录 1 软件安装 2 打开软件 3 编写程序 3.1 基础步骤 3.2 添加PATH 3.3 命令行模式 4 ...
- MATLAB1127(传递函数)
sys=tf(400,[1,50,0]) sys = 400 ---------- s^2 + 50 s 其中,tf()函数的用法. 传递函数 dsys=c2d(sys,ts,'z') dsys ...
- javascript实现checkbox提交submit请求
javascript实现checkbox提交submit请求 背景:使用django模板中for来形成多个checkbox,需要点击单个checkbox并查询数据触发submit请求到后台,djang ...