最大比率传输(Maximum Ratio Transmission, MRT)原理分析
转载请注明出处。
最大比率发射(Maximum Ratio Transmission, MRT)是文献中经常看见的一个词,今天就在这里做一下笔记。
参考文献为:T. K. Y. Lo, "Maximum ratio transmission," in IEEE Transactions on Communications, vol. 47, no. 10, pp. 1458-1461, Oct. 1999. doi: 10.1109/26.795811
1. 背景
无线通信系统受到的最不利的传播影响是多径衰落。天线分集技术是无线通信工程师对抗多径衰落的常用方法之一。一种经典的组合技术是最大比率组合(MRC),MRC中来自接收天线单元的信号被加权,使得其和的信噪比(SNR)最大。目前为止,MRC技术仅用于接收应用处理中。随着越来越多的无线业务的出现,越来越多的应用可能需要在发射机或发射机和接收机处进行分集以对抗严重的衰落效应。因此提出了一些方案,比如延迟发射分集方案。
然而,这些发射分集技术建立在目标的基础上,而不是最大化信噪比。也就是说,就信噪比性能而言,它们是次优的。因此,本文将从概念和原理上建立最大传动比(MRT)的框架。它可以看作是多发射天线和多接收天线最大比值算法的推广。它还为系统利用发射分集和接收分集获得最佳性能提供了参考。
2. 系统模型
发射端配备 \(K\) 根天线,接收端配备 \(L\) 根发射天线,其系统模型如图1所示:
图1. 系统模型
假设其信道 \(\pmb{H}\) 是统计信道,可以表示为:
这里 \(h_{pk}\) 表示第 \(k\) 根天线和第 \(p\) 根天线的信道系数。
\]
这里发射的信号 \(\boldsymbol{s}\) 表示为
\]
\({\pmb{n}} = {[{n_1} \cdots {n_L}]^{\rm T}}\) 表示加性高斯白噪声。
3. 最大比率发射(MRT)原理
为了从信道矩阵生成 \(K \times 1\) 的传输权重向量,需要进行线性变换,即:
\]
这里 \({\pmb{g}} = [{g_1} \cdots {g_L}]\)。传输信号向量就可以表示为:
\]
归一化因子 \(a\) 必须满足:
因此,接收信号变为:
\]
为了估计发送符号,必须将接收权重向量 \(\pmb{w}\) 应用于接收信号向量 \(\pmb{x}\),如果将 \(\pmb{w}\) 设为 \(\pmb{g}\),那么估计的符号为:
\]
总的SNR为:
\]
这里 \({\gamma _0} = \frac{{\sigma _c^2}}{{\sigma _n^2}}\) 表示单发射天线的平均SNR,(即没有分集)。
从(10)式可知,总SNR和 \(\pmb{g}\) 有关,因此,可以通过选择合适的 \(\pmb{g}\) 来最大化总的SNR。
由于 \(h_{pk}\) 假设在统计意义上是相同的,所以最大化SNR必须满足 \(\left| {{g_1}} \right| = \left| {{g_2}} \right| = \cdots = \left| {{g_L}} \right|\)。在不改变问题性质的情况下,为了简单起见,可以设置 \(\left| {{g_p}} \right| = 1\),因此,总的SNR可以表示为:
\]
所以,当 \({{a^2}}\) 最大时,(11)式就是最大值。那么 \({{a^2}}\) 时就有:
\]
此时,有:
\]
4. 讨论
往期精选:
[1] 线性降维:主成分分析PCA原理分析与仿真验证
[3] 简述3D点云配准算法
[5] 智能算法|以动物命名的算法
[6] 一份超全面的机器学习公共数据集
[7] 矩阵填充|奇异值阈值算法
[8] 可重构/大规模智能反射表面reconfigurable/large intelligent surface综述
[9] 迭代硬阈值类算法总结||IHT/NIHT/CGIHT/HTP
[10] 软阈值迭代算法(ISTA)和快速软阈值迭代算法(FISTA)
[11] 伍德伯里矩阵恒等式(Woodbury matrix identity)
[12] 压缩感知:一种新型亚采样技术
更多精彩内容请关注订阅号优化与算法和加入QQ讨论群1032493483获取更多资料
最大比率传输(Maximum Ratio Transmission, MRT)原理分析的更多相关文章
- SPI协议及工作原理分析
说明.文章摘自:SPI协议及其工作原理分析 http://blog.csdn.net/skyflying2012/article/details/11710801 一.概述. SPI, Serial ...
- TCP协议可靠性数据传输实现原理分析
http://blog.csdn.net/chexlong/article/details/6123087 TCP 协议是一种面向连接的,为不同主机进程间提供可靠数据传输的协议.TCP 协议假定其所使 ...
- Android应用程序组件Content Provider在应用程序之间共享数据的原理分析
文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6967204 在Android系统中,不同的应用 ...
- 消息队列NetMQ 原理分析1-Context和ZObject
前言 介绍 NetMQ是ZeroMQ的C#移植版本,它是对标准socket接口的扩展.它提供了一种异步消息队列,多消息模式,消息过滤(订阅),对多种传输协议的无缝访问. 当前有2个版本正在维护,版本3 ...
- 消息队列NetMQ 原理分析2-IO线程和完成端口
消息队列NetMQ 原理分析2-IO线程和完成端口 前言 介绍 目的 IO线程 初始化IO线程 Proactor 启动Procator线程轮询 处理socket 获取超时时间 从完成端口获取处理完的状 ...
- 消息队列NetMQ 原理分析3-命令产生/处理和回收线程
消息队列NetMQ 原理分析3-命令产生/处理和回收线程 前言 介绍 目的 命令 命令结构 命令产生 命令处理 创建Socket(SocketBase) 创建连接 创建绑定 回收线程 释放Socket ...
- 消息队列NetMQ 原理分析4-Socket、Session、Option和Pipe
消息队列NetMQ 原理分析4-Socket.Session.Option和Pipe 前言 介绍 目的 Socket 接口实现 内部结构 Session Option Pipe YPipe Msg Y ...
- 消息队列NetMQ 原理分析5-StreamEngine、Encord和Decord
消息队列NetMQ 原理分析5-StreamEngine,Encord和Decord 前言 介绍 目的 StreamEngine 发送数据 接收数据 流程分析 Encoder V2Encoder V1 ...
- java多线程系列(五)---synchronized ReentrantLock volatile Atomic 原理分析
java多线程系列(五)---synchronized ReentrantLock volatile Atomic 原理分析 前言:如有不正确的地方,还望指正. 目录 认识cpu.核心与线程 java ...
随机推荐
- Android编程权威指南第三版 第32章
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_35564145/article/de ...
- Django+Celery框架自动化定时任务开发
本章介绍使用DjCelery即Django+Celery框架开发定时任务功能,在Autotestplat平台上实现单一接口自动化测试脚本.业务场景接口自动化测试脚本.App自动化测试脚本.Web自动化 ...
- ECMA5中定义的对象属性特性和方法
ECMA5规定了只有内部才有的特性,描述了属性的各种特征,这些特性用于实现JavaScript引擎,因此在Js中不能直接访问他们.为了标识特性,我们一般会他们放入两对方括号中. ECMAScript中 ...
- Python——3条件判断和循环
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- python 临时文件
1. TemporaryFile 临时文件 TemporaryFile 不在硬盘上的生成真正文件,而是写在内存中 from tempfile import TemporaryFile # , Name ...
- Python开发(二):列表、字典、元组与文件处理
Python开发(二):列表.字典.元组与文件处理 一:列表二:元组三:字典四:文件处理 一:列表 为什么需要列表 可以通过列表可以对数据实现最方便的存储.修改等操作.字符串是不能修改的,所以无法 ...
- python中excel数据分组处理
1.场景描述 因文本相似性热度统计(python版)需求中要根据故障类型进行分组统计,需要对excel进行分组后再分词统计,简单记录下,有需要的朋友可以直接拿走,不客气! 2.解决方案 采用panda ...
- js的Set和Map集合
目录 1.js的Set介绍 1-1.Set基础用法 1-2.Set对象的操作方法 1-3.Set对象的遍历方法 2.js的Set扩展WeakSet篇 3.js的Map介绍 3-1.Map基础用法 3- ...
- 2020 新个税算的头疼?会 python,这都不是事儿...
背景 今年疫情复工后,财务小姐姐给我们普及了2020年新个税的算法.. 听完之后的感觉就是:恩,原来是这么回事! 虽然是个小工薪阶级,但是对于扣多少税还是很关心的.于是拿起笔算了算2月份的个税,产生了 ...
- 新建eclipse工作空间的常用设置
1.设置字体: Window->Preferences->(可以直接搜索font)General -> Appearance ->Colors and Fonts --> ...