Balls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1196   Accepted: 783

Description

The classic Two Glass Balls brain-teaser is often posed as:

"Given two identical glass spheres, you would like to determine the lowest floor in a 100-story building from which they will break when dropped. Assume the spheres are undamaged when dropped below this point. What is the strategy that will minimize the worst-case scenario for number of drops?"

Suppose that we had only one ball. We'd have to drop from each floor from 1 to 100 in sequence, requiring 100 drops in the worst case.

Now consider the case where we have two balls. Suppose we drop the first ball from floor n. If it breaks we're in the case where we have one ball remaining and we need to drop from floors 1 to n-1 in sequence, yielding n drops in the worst case (the first ball is dropped once, the second at most n-1 times). However, if it does not break when dropped from floor n, we have reduced the problem to dropping from floors n+1 to 100. In either case we must keep in mind that we've already used one drop. So the minimum number of drops, in the worst case, is the minimum over all n.

You will write a program to determine the minimum number of drops required, in the worst case, given B balls and an M-story building.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set consists of a single line containing three(3) decimal integer values: the problem number, followed by a space, followed by the number of balls B, (1 ≤ B ≤ 50), followed by a space and the number of floors in the building M, (1 ≤ M ≤ 1000).

Output

For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the minimum number of drops needed for the corresponding values of B and M.

Sample Input

4
1 2 10
2 2 100
3 2 300
4 25 900

Sample Output

1 4
2 14
3 24
4 10

Source

 
 
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <string>
#include <deque>
using namespace std;
#define ll long long
#define N 1000009
#define gep(i,a,b) for(int i=a;i<=b;i++)
#define gepp(i,a,b) for(int i=a;i>=b;i--)
#define gep1(i,a,b) for(ll i=a;i<=b;i++)
#define gepp1(i,a,b) for(ll i=a;i>=b;i--)
#define mem(a,b) memset(a,b,sizeof(a))
#define mod 1000000007
#define lowbit(x) x&(-x)
#define inf 100000
int t,a,b,m;
int dp[][];
/*
dp[i][j]:i层楼,J个球在最坏的情况下需要的次数
枚举前面的k : 1 ~ i
没碎 dp[i][j]=dp[i-k][j]+1//还有i-k层楼,下面的楼肯定不需要了,还有j个球
碎了 dp[i][j]=dp[k-1][j-1]+1//往下k-1层,上面的楼肯定不用查了,还有j-1个球
dp[i][j]=min(dp[i][j],max(dp[i-k][j],dp[k-1][j-1])+1);//+1因为 k 层楼需要一次
*/
void init(){
gep(i,,){
gep(j,,){
dp[i][j]=inf;
}
}
gep(i,,) dp[][i]=;
//从1开始
gep(i,,){
gep(j,,){
gep(k,,i){
dp[i][j]=min(dp[i][j],max(dp[i-k][j],dp[k-][j-])+);
}
}
}
}
int main()
{
init();
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&a,&b,&m);
printf("%d %d\n",a,dp[m][b]);
}
return ;
}

poj 3783的更多相关文章

  1. poj 3783 Balls 动态规划 100层楼投鸡蛋问题

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098409.html 题目链接:poj 3783 Balls 动态规划 100层楼投鸡蛋问题 ...

  2. POJ 3783 Balls --扔鸡蛋问题 经典DP

    题目链接 这个问题是谷歌面试题的加强版,面试题问的是100层楼2个鸡蛋最坏扔多少次:传送门. 下面我们来研究下这个题,B个鸡蛋M层楼扔多少次. 题意:给定B (B <= 50) 个一样的球,从 ...

  3. Balls(poj 3783)

    The classic Two Glass Balls brain-teaser is often posed as: “Given two identical glass spheres, you ...

  4. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  5. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  6. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  7. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

  8. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

  9. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

随机推荐

  1. 使用 MiniProfiler 来分析 ASP.NET Core 应用

    MiniProfiler(https://miniprofiler.com/)是一个轻量级且简单易用的分析工具库,它可以用来分析ASP.NET Core应用. 优点 针对ASP.NET Core MV ...

  2. <?php } ?> 标记

    只是为了分离php 和html 代码的一种书写方法. 你要知道 一段程序代码 function fool(){//内容}是这么组成的那么当有html代码的时候就需要先暂时将php的开始部分给分开(不分 ...

  3. Spring-打印机案例

    1.导包 <!--beans--><dependency> <groupId>org.springframework</groupId> <art ...

  4. IBatis.net特性展示代码

    最近公司计划设计新业务平台架构.数据访问层框架要使用ibatis.net.头让我做些例子给其他同事演示下 ibatis的基本特性.然后评估下看是否使用.本来以后上官方下载NPetshop演示下就行了那 ...

  5. Django的学习需要掌握的一些基础和初步搭建自己的框架

    一.Django的学习需要掌握的一些基础 第一个需要注意的点:客户端发送过来的数据结构组成: 第二个需要注意的点:动态网页和静态网页 静态网页:用户发送请求,服务端找到对应的静态文件返回给浏览器,静态 ...

  6. Spark-水库抽样-根据抽样率确定每个分区的样本大小

    /* * 输入:采样率,待采样的RDD * 输出:每个分区的样本大小(记录数) * 由采样率确定,每个分区的样本大小 */ def findNumPerPartition[T: ClassTag, U ...

  7. cacti添加被监控机全过程

    在被监控端上的操作: 1.在被监控机器上root目录下建立文件 test.sh chmod 777 test.sh cat test #!/bin/bash echo $RANDOM 2.在snmpd ...

  8. iOS Category实现原理 (补充)

    iOS Category实现原理 (补充) load 和 initialize load load方法会在程序启动就会调用,当装载类信息的时候就会调用. 调用顺序看一下源代码.在 objc-loadm ...

  9. PMP项目管理学习笔记引言(1)——为啥要取得认证?

    (一)为啥要取得认证? 如果你参与过很多项目,就会发现,你总是在周而复始地面对同样的一些问题.一些常见的问题目前已经有了通用解决方案.经过多年的实战,项目经理已们已经掌握了很多应验教训,而通过PMP( ...

  10. codevs 1553 互斥的数

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 有这样的一个集合,集合中的元素个数由给定的N决定,集合的元素为N个不同的正整数, ...