Balls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1196   Accepted: 783

Description

The classic Two Glass Balls brain-teaser is often posed as:

"Given two identical glass spheres, you would like to determine the lowest floor in a 100-story building from which they will break when dropped. Assume the spheres are undamaged when dropped below this point. What is the strategy that will minimize the worst-case scenario for number of drops?"

Suppose that we had only one ball. We'd have to drop from each floor from 1 to 100 in sequence, requiring 100 drops in the worst case.

Now consider the case where we have two balls. Suppose we drop the first ball from floor n. If it breaks we're in the case where we have one ball remaining and we need to drop from floors 1 to n-1 in sequence, yielding n drops in the worst case (the first ball is dropped once, the second at most n-1 times). However, if it does not break when dropped from floor n, we have reduced the problem to dropping from floors n+1 to 100. In either case we must keep in mind that we've already used one drop. So the minimum number of drops, in the worst case, is the minimum over all n.

You will write a program to determine the minimum number of drops required, in the worst case, given B balls and an M-story building.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set consists of a single line containing three(3) decimal integer values: the problem number, followed by a space, followed by the number of balls B, (1 ≤ B ≤ 50), followed by a space and the number of floors in the building M, (1 ≤ M ≤ 1000).

Output

For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the minimum number of drops needed for the corresponding values of B and M.

Sample Input

4
1 2 10
2 2 100
3 2 300
4 25 900

Sample Output

1 4
2 14
3 24
4 10

Source

 
 
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <string>
#include <deque>
using namespace std;
#define ll long long
#define N 1000009
#define gep(i,a,b) for(int i=a;i<=b;i++)
#define gepp(i,a,b) for(int i=a;i>=b;i--)
#define gep1(i,a,b) for(ll i=a;i<=b;i++)
#define gepp1(i,a,b) for(ll i=a;i>=b;i--)
#define mem(a,b) memset(a,b,sizeof(a))
#define mod 1000000007
#define lowbit(x) x&(-x)
#define inf 100000
int t,a,b,m;
int dp[][];
/*
dp[i][j]:i层楼,J个球在最坏的情况下需要的次数
枚举前面的k : 1 ~ i
没碎 dp[i][j]=dp[i-k][j]+1//还有i-k层楼,下面的楼肯定不需要了,还有j个球
碎了 dp[i][j]=dp[k-1][j-1]+1//往下k-1层,上面的楼肯定不用查了,还有j-1个球
dp[i][j]=min(dp[i][j],max(dp[i-k][j],dp[k-1][j-1])+1);//+1因为 k 层楼需要一次
*/
void init(){
gep(i,,){
gep(j,,){
dp[i][j]=inf;
}
}
gep(i,,) dp[][i]=;
//从1开始
gep(i,,){
gep(j,,){
gep(k,,i){
dp[i][j]=min(dp[i][j],max(dp[i-k][j],dp[k-][j-])+);
}
}
}
}
int main()
{
init();
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&a,&b,&m);
printf("%d %d\n",a,dp[m][b]);
}
return ;
}

poj 3783的更多相关文章

  1. poj 3783 Balls 动态规划 100层楼投鸡蛋问题

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098409.html 题目链接:poj 3783 Balls 动态规划 100层楼投鸡蛋问题 ...

  2. POJ 3783 Balls --扔鸡蛋问题 经典DP

    题目链接 这个问题是谷歌面试题的加强版,面试题问的是100层楼2个鸡蛋最坏扔多少次:传送门. 下面我们来研究下这个题,B个鸡蛋M层楼扔多少次. 题意:给定B (B <= 50) 个一样的球,从 ...

  3. Balls(poj 3783)

    The classic Two Glass Balls brain-teaser is often posed as: “Given two identical glass spheres, you ...

  4. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  5. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  6. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  7. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

  8. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

  9. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

随机推荐

  1. Metasploits之ms10_018

    漏洞详情:https://technet.microsoft.com/library/security/ms10-018 一准备: 1:kali Linux系统 192.168.195.129 2:W ...

  2. python入门之实例-验证码

    需求: 随机生成6位的验证码,要求有字母和数字 import random temp = "" for i in range(6): j = random.randrange(0, ...

  3. Partition(线段树的离线处理)

    有一点类似区间K值的求法. 这里有两颗树,一个是自己建的线段树,一个是题目中给定的树.以线段树和树进行区分. 首先离散化一下,以离散化后的结果建线段树,线段树的节点开了2维,一维保存当前以当前节点为权 ...

  4. setTimeout的核心原理和巧用

    你所不了解的setTimeout 发表于 2015年11月23日 by 愚人码头 被浏览 14,756 次 分享到: 0 小编推荐:掘金是一个高质量的技术社区,从 ECMAScript 6 到 Vue ...

  5. 12.JAVA-基本数据类型的包装类操作

    1.基本数据类型的包装类 java是一个面向对象编程语言,也就是说一切操作都要用对象的形式进行.但是有个矛盾: 基本数据类型(char,int,double等)不具备对象特性(不携带属性和方法) 这样 ...

  6. hihocoder1766 字符串问题

    思路: 不断贪心增加即可. 实现: #include <iostream> #include <cstring> using namespace std; ][]; int m ...

  7. codeforces1025

    hackforces + fstforces A 很明显当有一个字母出现次数>1时即合法 $n = 1$的情况需要特判 #include<cstdio> #include<ve ...

  8. 关于HTML5手机端页面缩放的问题

    通常在写HTML5手机端页面的时候,我们会发现页面所显示元素的比例不正确,那此时我们需要添加的就是: <meta name="viewport" content=" ...

  9. Android实现按钮点击效果(第一次点击变色,第二次恢复)

    1.首先创建一个按钮 <Button android:id="@+id/click" android:layout_width="fill_parent" ...

  10. Android 两个ArrayList找出相同元素及单个ArrayList删除元素

    //从一个ArrayList中删除重复元素 List<String> arrayList1 = new ArrayList<String>(); arrayList1.add( ...