bzoj 2007: [Noi2010]海拔【最小割+dijskstra】
上来就跑3e5的最大流……脑子抽了
很容易看出,每个地方的海拔都是0或1因为再高了没有意义,又,上去下来再上去没有意义,所以最后一定是从s连着一片0,剩下连着t一片1,然后有贡献的就是01交接的那些边
跑个最小割就好了
然而跑不过,考虑建对偶图,也就是网格的空当成一个点,然后这些点之间互相连边的权值为原图穿过他们的边的权值,建立一对原点汇点,分别连左下边界的新点和右上边界的新点,这样跑最短路就是最小割
方便的建图是把所有边转90度就是新边
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=300005;
int n,h[N],cnt,dis[N],id[505][505],tot,s,t;
bool v[N];
struct qwe
{
int ne,to,va;
}e[N*20];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
id[i][j]=++tot;
s=0,t=id[n][n]+1;
for(int i=1;i<=n+1;i++)
for(int j=1;j<=n;j++)
{
int x=read();
if(i==1)
add(id[i][j],t,x);
else if(i==n+1)
add(s,id[i-1][j],x);
else
add(id[i][j],id[i-1][j],x);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n+1;j++)
{
int x=read();
if(j==1)
add(s,id[i][j],x);
else if(j==n+1)
add(id[i][j-1],t,x);
else
add(id[i][j-1],id[i][j],x);
}
for(int i=1;i<=n+1;i++)
for(int j=1;j<=n;j++)
{
int x=read();
if(i==1)
add(t,id[i][j],x);
else if(i==n+1)
add(id[i-1][j],s,x);
else
add(id[i-1][j],id[i][j],x);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n+1;j++)
{
int x=read();
if(j==1)
add(id[i][j],s,x);
else if(j==n+1)
add(t,id[i][j-1],x);
else
add(id[i][j],id[i][j-1],x);
}
for(int i=s;i<=t;i++)
dis[i]=1e9;
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > >q;
dis[s]=0;
q.push(make_pair(dis[s],s));
while(!q.empty())
{
int u=q.top().second;
q.pop();
if(v[u])
continue;
v[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(dis[e[i].to]>dis[u]+e[i].va)
{
dis[e[i].to]=dis[u]+e[i].va;
q.push(make_pair(dis[e[i].to],e[i].to));
}
}
printf("%d\n",dis[t]);
return 0;
}
bzoj 2007: [Noi2010]海拔【最小割+dijskstra】的更多相关文章
- BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)
题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...
- bzoj 2007 [Noi2010]海拔——最小割转最短路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...
- BZOJ 2007: [Noi2010]海拔
2007: [Noi2010]海拔 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2410 Solved: 1142[Submit][Status] ...
- [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...
- BZOJ 2007 NOI2010 海拔高度 最小减产计划
标题效果:YT城市是一个精心规划的城市.这个城市是东西向和南北向干道成n×n地区性.简单.可以YT作为一个城市广场,每个区域也可被视为一个正方形.因此,.YT市中含有(n+1)×(n+1)交叉口和2n ...
- [NOI2010]海拔(最小割)
题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个 ...
- 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路
题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...
- [NOI2010]海拔——最小割+对偶图
题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. ...
- 【BZOJ 2007】 2007: [Noi2010]海拔 (平面图转对偶图+spfa)
2007: [Noi2010]海拔 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2504 Solved: 1195 Description YT市 ...
随机推荐
- Cocos2d-x之LayerMultiplex的使用
1.用处 用于管理Layer的切换,而不用切换场景. 2.代码 1).h文件 #include "cocos2d.h" #include "ui/CocosGUI.h&q ...
- iOS8中提示框的使用UIAlertController(UIAlertView和UIActionSheet二合一)
本文转载至 http://blog.csdn.net/liuwuguigui/article/details/39494597 IOS8UIAlertViewUIActionSheet ...
- Struts2中数据封装机制
Struts2当中数据封装的三种机制:属性驱动.标签驱动.模型驱动.下面来一一介绍. 一.属性驱动 1.需要提供对应属性的set方法进行数据的封装. 2.表单的哪些属性需要封装数据,那么在对应的Act ...
- java集合类学习心得
java集合类学习心得 看了java从入门到精通的第十章,做个总结,图片均取自网络. 常用集合的继承关系 Linked 改快读慢 Array 读快改慢 Hash 两都之间 Collection是集合接 ...
- A桶中有多少水?
如果你能算出桶中有多少水,我便许你下山去玩.有一天,老和尚让小和尚将A桶的水挑到B桶去,可是小和尚却想下山玩,不愿意挑水,老和尚便说:”如果你能够根据我的提示算出A桶中有多少升水,我便许你下山去玩.” ...
- Oracle序列更新为主键最大值
我们在使用 Oracle 数据库的时候,有时候会选择使用自增序列作为主键.但是在开发过程中往往会遇到一些不规范的操作,导致表的主键值不是使用序列插入的.这样在数据移植的时候就会出现各种各样的问题.当然 ...
- 牛逼的This使用
今天看到一个很不错的this使用demo: package com.toov5.Reordering; class Message1{ private Channel channel; private ...
- runtime之实现对象序列化
/* iOS序列化,将对象转成二进制,保存到本地 */ 定义一个对象,让它实现NSCoding协议,保证对象的编码和解码,person有三个属性 @interface Person : NSObjec ...
- hadoop集群部署后,遇到的问题记录
1. 部署完,启动集群后,mapred-site.xml文件中配置没有生效 <property> <name>mapred.job.tracker</name> ...
- css中块元素和行内元素区别
行内元素特点 1.和其他元素都在一行上: 2.元素的高度.宽度.行高及顶部和底部边距不可设置: 3.元素的宽度就是它包含的文字或图片的宽度,不可改变. 块元素特点 1.每个块级元素都从新的一行开始,并 ...