题目链接:

C. Foe Pairs

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

 

You are given a permutation p of length n. Also you are given m foe pairs (ai, bi) (1 ≤ ai, bi ≤ n, ai ≠ bi).

Your task is to count the number of different intervals (x, y) (1 ≤ x ≤ y ≤ n) that do not contain any foe pairs. So you shouldn't count intervals (x, y) that contain at least one foe pair in it (the positions and order of the values from the foe pair are not important).

Consider some example: p = [1, 3, 2, 4] and foe pairs are {(3, 2), (4, 2)}. The interval (1, 3) is incorrect because it contains a foe pair(3, 2). The interval (1, 4) is also incorrect because it contains two foe pairs (3, 2) and (4, 2). But the interval (1, 2) is correct because it doesn't contain any foe pair.

Input
 

The first line contains two integers n and m (1 ≤ n, m ≤ 3·10^5) — the length of the permutation p and the number of foe pairs.

The second line contains n distinct integers pi (1 ≤ pi ≤ n) — the elements of the permutation p.

Each of the next m lines contains two integers (ai, bi) (1 ≤ ai, bi ≤ n, ai ≠ bi) — the i-th foe pair. Note a foe pair can appear multiple times in the given list.

Output
 

Print the only integer c — the number of different intervals (x, y) that does not contain any foe pairs.

Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.

Examples
 
input
4 2
1 3 2 4
3 2
2 4
output
5
input
9 5
9 7 2 3 1 4 6 5 8
1 6
4 5
2 7
7 2
2 7
output
20
Note

In the first example the intervals from the answer are (1, 1), (1, 2), (2, 2), (3, 3) and (4, 4).

题意:

给一个数组,问有多少对(i,j)满足[a[i],a[j]]中不完整包含任何一个数对;

思路:

暴力是的复杂度太高,我先把这些数对都处理成原数组的位置,然后把它们搞进线段树里,就是把右端点当成左端点插入线段树时的位置,查询一个区间[i,j]时是否包含一个完整的线段可以看[i,j]中最大的左端点是多大,如果最大的左端点>=i时,我们就知道[i,j]中至少包含一个完整的线段;然后再枚举左端点,尺取法找右端点;然后把长度都加起来就是结果啦;

AC代码:

/*2014300227    652C - 11    GNU C++11    Accepted    311 ms    18796 KB*/
#include <bits/stdc++.h>
using namespace std;
const int N=3e5+;
typedef long long ll;
int n,a[N],fa[N],m,l,r;
struct Tree
{
int l,r,ans;
};
Tree tree[*N];
void Pushup(int node)
{
tree[node].ans=max(tree[*node].ans,tree[*node+].ans);
}
void build(int node,int L,int R)
{
tree[node].l=L;
tree[node].r=R;
if(L==R)
{
tree[node].ans=;
return ;
}
int mid=(L+R)>>;
build(*node,L,mid);
build(*node+,mid+,R);
Pushup(node);
}
void update(int node,int num,int pos)
{
if(tree[node].l==tree[node].r&&tree[node].r==pos)
{
tree[node].ans=max(tree[node].ans,num);
return ;
}
int mid=(tree[node].l+tree[node].r)>>;
if(pos<=mid)update(*node,num,pos);
else update(*node+,num,pos);
Pushup(node);
}
int query(int node,int L,int R)
{
if(L<=tree[node].l&&R>=tree[node].r)
{
return tree[node].ans;
}
int mid=(tree[node].l+tree[node].r)>>;
if(R<=mid)return query(*node,L,R);
else if(L>mid)return query(*node+,L,R);
else return max(query(*node,L,mid),query(*node+,mid+,R));
}
struct PO
{
int l,r;
}po[N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
fa[a[i]]=i;
}
build(,,n);
for(int i=;i<m;i++)
{
scanf("%d%d",&l,&r);
po[i].l=min(fa[l],fa[r]);
po[i].r=max(fa[l],fa[r]);
update(,po[i].l,po[i].r);//更新;
}
ll ans=;
int l=,r=;
for(int i=;i<=n;i++)
{
l=i;
while(r<=n)
{
int q=query(,i,r);//查询[i,r]中的最大值,即是包含于这个区间的线段最大的左端点;
if(q<i)r++;//r为以l为左端点满足要求的最长的区间的右端点+1;
else break;
}
ans+=(ll)(r-l);
}
cout<<ans<<"\n";
return ;
}

codeforces 652C C. Foe Pairs(尺取法+线段树查询一个区间覆盖线段)的更多相关文章

  1. 数据结构1 线段树查询一个区间的O(log N) 复杂度的证明

    线段树属于二叉树, 其核心特征就是支持区间加法,这样就可以把任意待查询的区间$[L, R]$分解到线段树的节点上去,再把这些节点的信息合并起来从而得到区间$[L,R]$的信息. 下面证明在线段树上查询 ...

  2. 数据结构1 「在线段树中查询一个区间的复杂度为 $O(\log N)$」的证明

    线段树属于二叉树, 其核心特征就是支持区间加法,这样就可以把任意待查询的区间$[L, R]$分解到线段树的节点上去,再把这些节点的信息合并起来从而得到区间$[L,R]$的信息. 下面证明在线段树上查询 ...

  3. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  4. HDU 1754 I Hate It(线段树单点替换+区间最值)

    I Hate It [题目链接]I Hate It [题目类型]线段树单点替换+区间最值 &题意: 本题目包含多组测试,请处理到文件结束. 在每个测试的第一行,有两个正整数 N 和 M ( 0 ...

  5. HDU 3577Fast Arrangement(线段树模板之区间增减更新 区间求和查询)

    Fast Arrangement Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  6. POJ 3468 A Simple Problem with Integers(线段树模板之区间增减更新 区间求和查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 140120 ...

  7. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  8. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

  9. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

随机推荐

  1. Android自定义控件之自定义组合控件(三)

    前言: 前两篇介绍了自定义控件的基础原理Android自定义控件之基本原理(一).自定义属性Android自定义控件之自定义属性(二).今天重点介绍一下如何通过自定义组合控件来提高布局的复用,降低开发 ...

  2. Go语言_RPC_Go语言的RPC

    一 标准库的RPC RPC(Remote Procedure Call,远程过程调用)是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络细节的应用程序通信协议.简单的说就是要像调用本地函数 ...

  3. MBR结构解析与fdisk的bash实现

    一.MBR结构解析 首先我们先介绍一些MBR的基本知识基础,再晾图片分析. MBR主要分为三大块各自是: 1.载入引导程序(446K) 2.分区表(64k) 3.标志结束位(2k) 载入引导程序:内容 ...

  4. 在c++11中你最惊讶的新feature是什么?

    对我来说,我最惊讶竟然把对于多线程的支持加到标准中了.真的想不明确,对于c++这样一种语言.怎么会加进这个东西. 1. 由于各个平台的不同,对于多线程的支持会有很多平台独有的特色.这样c++标准的定义 ...

  5. openERP server action,最强大的功能,没有之一

    Jeffery9@gmail.com 出品 @jeffery-陈帆 原理 ations OE定义了ir.actions.actions,并从中派生了众多的子类 ir.actions.client ir ...

  6. Allegro PCB中封装焊盘替换操作详解

    Allegro PCB中有些功能在某种情况下使用会产生神奇的效果,但有部分人不会或不熟悉在特定情况下使用某些功能来解决问题.如焊盘替换,有些特殊器件(如下图)封装按照datasheet给出的参考制作, ...

  7. some cmds,tools and utils man

    NAME stdbuf - Run COMMAND, with modified buffering operations for its standard streams. SYNOPSIS std ...

  8. 实现iOS7上tableView的切割线像iOS6中的效果

    iOS7上tableView的切割线左边短了一点,要实现和iOS6中的效果还是有方法的,UITableView头文件中个属性: @property (nonatomic)         UIEdge ...

  9. Learning English From Android Source Code:2 Ampersand

    这一次想把标点符号的英语表达总结一下,这些单词非常重要但easy被我们忽视.以我的经验,还是多认识几个.以备不时之需. 以下从"标点符号"開始: punctuation [英][ˌ ...

  10. bvlc_reference_caffenet.caffemodel

    #uncoding:utf-8 # set up Python environment: numpy for numerical routines, and matplotlib for plotti ...