BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】
题目
给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。
输入格式
第一行为正整数T,代表数据组数。
每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有
输出格式
输出一个整数,表示至少要走多少次。
输入样例
1
3 3
0 1 5
5 0 0
1 0 0
输出样例
10
提示
N<=1000,M<=1000.每个格子中财宝数不超过10^6
题解
DAG最小路径覆盖 = 最长反链
反链指最大的点的集合,使集合中的点互不到达
显然反链上的点就是从左下到右上的
一个简单的dp就可以了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,A[maxn][maxn];
LL f[maxn][maxn];
int main(){
int T = read();
while (T--){
n = read(); m = read();
REP(i,n) REP(j,m) A[i][j] = read();
REP(i,n) for (int j = m; j; j--)
f[i][j] = max(f[i - 1][j + 1] + A[i][j],max(f[i - 1][j],f[i][j + 1]));
printf("%lld\n",f[n][1]);
REP(i,n) REP(j,m) f[i][j] = 0;
}
return 0;
}
BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】的更多相关文章
- [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)
题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...
- 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp
题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...
- 【BZOJ3997】【TJOI2015】组合数学 Dilworth定理 DP
题目描述 有一个\(n\times m\)的网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完. 此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子 ...
- BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)
Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...
- BZOJ3997 TJOI2015组合数学(动态规划)
copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...
- BZOJ3997: [TJOI2015]组合数学(网络流)
3997: [TJOI2015]组合数学 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 405 Solved: 284[Submit][Status ...
- bzoj3997[TJOI2015]组合数学
http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...
- bzoj3997[TJOI2015]组合数学(求最长反链的dp)
组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...
- bzoj千题计划298:bzoj3997: [TJOI2015]组合数学
http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...
随机推荐
- springboot框架快速搭建
1. 新建Maven项目 spring-boot 2. pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0 ...
- 【转】浅谈Node.js单线程模型
Node.js采用 事件驱动 和 异步I/O 的方式,实现了一个单线程.高并发的运行时环境,而单线程就意味着同一时间只能做一件事,那么Node.js如何利用单线程来实现高并发和异步I/O?本文将围绕这 ...
- el-upload控件一次接口请求上传多个文件
el-upload组件默认情况下上传多少个文件就会请求多少次上传接口,如何一次上传多个文件而不必多次请求上传接口呢?直接看代码 html <el-upload :action="act ...
- java实现单链表归并算法
public class LinkMergeSort {static int number=0;public static void main(String[] args) {int[] a = {1 ...
- bootstrap validation submit
表单提交校验功能 前端样式用bootstrap,依赖jquery,应用jquery自带的validation插件. 其实校验是一个小功能,做了还几天主要是因为碰到了两个问题,一个是对于提示信息样式添加 ...
- Tomcat启动xxx.keystore文件找不到
在server.xml里配置了 <Connector SSLEnabled="true" acceptCount="1000000" clientAuth ...
- dynamic routing between captual
对于人脑 决策树形式 对于CNN 层级与层级间的传递 人在识别物体的时候会进行坐标框架的设置 CNN无法识别,只能通过大量训练 胶囊 :一个神经元集合,有一个活动的向量,来表示物体的各类信息,向量的长 ...
- Scrapy用pipelines把字典保存为csv格式
import csv class MyProjectPipeline(object): # 保存为csv格式 def __init__(self): # 打开文件,指定方式为写,利用第3个参数把csv ...
- django_数据库操作—增、删、改、查
增加 增加数据有两种方法 1> sava >>> from datetime import date >>> book = BookInfo( btitle= ...
- 权限组件(11):基于formset实现批量增加
效果图: 增加页面: 编辑页面: 因为后面要对权限进行批量操作,所以先用这个示例演示下如何实现批量操作 数据库 from django.db import models class Menu(mode ...