luogu1742 最小圆覆盖
狗题卡我精度……sol
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <ctime>
#include <cmath>
using namespace std;
int n;
struct Point{
double x, y;
}pt[100005], O;
double r;
const double eps=1e-10;
double dis(const Point &u, const Point &v){
return sqrt((u.x-v.x)*(u.x-v.x)+(u.y-v.y)*(u.y-v.y));
}
void getO(const Point &u, const Point &v, const Point &w){
double a=u.x-v.x;
double b=u.y-v.y;
double c=v.x-w.x;
double d=v.y-w.y;
double e=a*(u.x+v.x)+b*(u.y+v.y);
double f=c*(v.x+w.x)+d*(v.y+w.y);
O.x = (e*d-b*f)/(a*d-c*b)/2;
O.y = (c*e-a*f)/(b*c-a*d)/2;
}
bool inCircle(const Point &u){
return dis(u,O)<=r+eps;
}
int main(){
srand(time(NULL));
cin>>n;
for(int i=1; i<=n; i++)
scanf("%lf %lf", &pt[i].x, &pt[i].y);
random_shuffle(pt+1, pt+1+n);
O = pt[1];
for(int i=1; i<=n; i++)
if(!inCircle(pt[i])){
O = pt[i];
for(int j=1; j<i; j++)
if(!inCircle(pt[j])){
O = (Point){(pt[i].x+pt[j].x)/2, (pt[i].y+pt[j].y)/2};
r = dis(pt[i], pt[j]) / 2.0;
for(int k=1; k<j; k++)
if(!inCircle(pt[k])){
getO(pt[i], pt[j], pt[k]);
r = dis(O, pt[k]);
}
}
}
printf("%.10f\n%.10f %.10f\n", r, O.x, O.y);
return 0;
}
luogu1742 最小圆覆盖的更多相关文章
- 【BZOJ-1336&1337】Alie最小圆覆盖 最小圆覆盖(随机增量法)
1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1573 ...
- Bzoj 1336&1337 Alien最小圆覆盖
1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec Memory Limit: 162 MBSec Special Judge Submit: 1473 ...
- hdu3007Buried memory(最小圆覆盖)
链接 普通的暴力复杂度达到O(n^4),对于这题肯定是不行的. 解法:随机增量算法 参考http://www.2cto.com/kf/201208/149602.html algorithm:A.令C ...
- [BZOJ 3564] [SHOI2014] 信号增幅仪 【最小圆覆盖】
题目链接:BZOJ - 3564 题目分析 求最小椭圆覆盖,题目给定了椭圆的长轴与 x 轴正方向的夹角,给定了椭圆长轴与短轴的比值. 那么先将所有点旋转一个角度,使椭圆长轴与 x 轴平行,再将所有点的 ...
- [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】
题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...
- 最小圆覆盖 hdu 3007
今天学习了一下最小圆覆盖, 看了一下午都没看懂, 晚上慢慢的摸索这代码,接合着别人的讲解, 画着图跟着代码一步一步的走着,竟然有些理解了. 最小圆覆盖: 给定n个点, 求出半径最小的圆可以把这些点全部 ...
- bzoj1336: [Balkan2002]Alien最小圆覆盖
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1336 1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 ...
- 【做题】POI2011R1 - Plot——最小圆覆盖&倍增
原文链接 https://www.cnblogs.com/cly-none/p/loj2159.html 题意:给出\(n\)个点,你需要按编号将其划分成不超过\(m\)段连续的区间,使得所有每个区间 ...
- 【BZOJ2823】[AHOI2012]信号塔(最小圆覆盖)
[BZOJ2823][AHOI2012]信号塔(最小圆覆盖) 题面 BZOJ 洛谷 相同的题: BZOJ1 BZOJ2 洛谷 题解 模板题... #include<iostream> #i ...
随机推荐
- NodeJS学习视频
腾讯课堂初级课程 https://ke.qq.com/webcourse/index.html#course_id=196698&term_id=100233129&taid=1064 ...
- File类。
File类: java.io.File 类.是文件和文件夹目录名的抽象表示形式. 可以用File对文件和文件夹进行 创建,删除,获取等操作. File类的一些静态成员变量: static String ...
- 单机版mongodb
1.下载安装包 wget http://fastdl.mongodb.org/linux/mongodb-linux-i686-1.8.2.tgz 下载完成后解压缩压缩包 tar zxf mongod ...
- 9、数值的整数次方------------>剑指offer系列
数值的整数次方 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方. 思路 这道题逻辑上很简单,但很容易出错 关键是要考虑全面,考虑到所有情况 ...
- angularJS在移动端的点击事件延迟问题
在运用angular开发移动端的应用时,发现它并没有将ng-click做兼容,在移动端使用ng-click事件仍然会有300ms延迟.后来发现angular有一个专门针对移动端的模块:angular- ...
- android动画ppt整理
案例
- wireshark使用教程及TCP三次握手实例
安装后,选择对应访问网络的网卡,即可看到下面的主界面 具体说下封包详细信息 (Packet Details Pane) 这个面板是我们最重要的,用来查看协议中的每一个字段. 各行信息分别为 Frame ...
- redis 知识归档
中文版redis命令 http://www.redis.net.cn/order/ redis例子 https://github.com/ServiceStack/ServiceStack.Ex ...
- 洛谷 P3143 [USACO16OPEN]钻石收藏家Diamond Collector
题目描述 Bessie the cow, always a fan of shiny objects, has taken up a hobby of mining diamonds in her s ...
- Angularjs 列表页面筛选
个人博客链接:http://blog.yangqiong.com.cn/angularjs-lie-biao-ye-mian-shai-xuan/ 需求:页面URL和查询结果保持一致,当筛选条件变化时 ...