P3746 [六省联考2017]组合数问题

\(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{i-1,j}\)

\(dp_{i,0},dp_{i,1},dp_{i,2}.....dp_{i,k-1}\) \(\Longrightarrow\) \(dp_{i+1,0},dp_{i+1,1},dp_{i+1,2}.....dp_{i+1,k-1}\)

仔细想想,你能构造出矩阵的

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long LL;
const LL maxn=100;
inline LL Read(){
LL x=0,f=1; char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
struct mat{
LL m[maxn][maxn];
}rt,a,b;
LL n,MOD,K,r;
inline mat Mul(const mat &x,const mat &y){
mat res;
memset(res.m,0,sizeof(res.m));
for(LL i=0;i<=K-1;++i)
for(LL j=0;j<=K-1;++j)
for(LL k=0;k<=K-1;++k)
res.m[i][j]=(res.m[i][j]+x.m[i][k]*y.m[k][j]%MOD)%MOD;
return res;
}
inline void Pow(LL mi){
while(mi){
if(mi&1)
a=Mul(a,b);
b=Mul(b,b);
mi>>=1;
}
}
int main(){
n=Read(),MOD=Read(),K=Read(),r=Read();
for(LL i=0;i<=K-2;++i)
b.m[i][i]=b.m[i][i+1]=1;
++b.m[K-1][0],++b.m[K-1][K-1];
for(LL i=0;i<=K-1;++i)
a.m[i][i]=1;
Pow(n*K);
rt.m[0][0]=1;
rt=Mul(rt,a);
printf("%lld",rt.m[0][r]);
return 0;
}

P3746 [六省联考2017]组合数问题的更多相关文章

  1. 洛谷P3746 [六省联考2017]组合数问题

    题目描述 组合数 C_n^mCnm​ 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...

  2. [BZOJ4870][六省联考2017]组合数问题(组合数动规)

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 748  Solved: 398[Submit][Statu ...

  3. P3746 【[六省联考2017]组合数问题】

    题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...

  4. bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题

    http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...

  5. 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学

    正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...

  6. BZOJ4870 [六省联考2017] 组合数问题 【快速幂】

    题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...

  7. [六省联考2017]组合数问题 (矩阵优化$dp$)

    题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...

  8. 六省联考2017 Day1

    目录 2018.3.18 Test T1 BZOJ.4868.[六省联考2017]期末考试 T2 T3 BZOJ.4870.[六省联考2017]组合数问题(DP 矩阵快速幂) 总结 考试代码 T1 T ...

  9. 【BZOJ4873】[六省联考2017]寿司餐厅(网络流)

    [BZOJ4873][六省联考2017]寿司餐厅(网络流) 题面 BZOJ 洛谷 题解 很有意思的题目 首先看到答案的计算方法,就很明显的感觉到是一个最大权闭合子图. 然后只需要考虑怎么构图就行了. ...

随机推荐

  1. C#面试基础题1

    1.简述 private. protected. public. internal 修饰符的访问权限.(C++中没有internal) private : 私有成员, 在类的内部才可以访问 ,也就是类 ...

  2. 即将到来的Android N,将具备这些新特性

    原文转自:http://www.leiphone.com/news/201602/pSRQAuAjMFJITqHe.html         原创 訾竣喆 即将到来的Android N,将具备这些新特 ...

  3. js 展开&收缩 二种

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. hdfs笔记

    Distributed File System 数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,因此迫切需要一种系统来管理多台机器上的文 ...

  5. 设计模式之MVC设计模式初阶

    MVC M:Model(数据) V:View(界面) C:Control(控制) 1⃣️Control可以直接访问View和Model 2⃣️View不可以拥有Control和Model属性,降低耦合 ...

  6. FileUpload控件预览图片

    HTML代码: <tr> <td class="auto-style1">上传图片:</td> <td> <asp:FileU ...

  7. spring学习六----------Bean的配置之Aware接口

    © 版权声明:本文为博主原创文章,转载请注明出处 Aware Spring提供了一些以Aware结尾的接口,实现了Aware接口的bean在被初始化后,可以获取相应的资源 通过Aware接口,可以对S ...

  8. GenericServlet 、Servlet和httpServler他们之间的关系

    1.GenericServlet类是所有Servlet类的祖先类. 2.HttpServlet类继承了GenericServlet类. 3.Servlet有两个非常重要的的对象,可以说是java we ...

  9. 巧用redis位图存储亿级数据与访问

    业务背景 现有一个业务需求,需要从一批很大的用户活跃数据(2亿+)中判断用户是否是活跃用户.由于此数据是基于用户的各种行为日志清洗才能得到,数据部门不能提供实时接口,只能提供包含用户及是否活跃的指定格 ...

  10. TP 框架 如果去掉表前缀

    #jd_admin_abc 去掉前缀 C('DB_PREFIX')=获取前缀 结果为admin_abc $table_Name=str_replace(C('DB_PREFIX'), '', $tab ...