洛谷P2344 奶牛抗议
题目背景
Generic Cow Protests, 2011 Feb
题目描述
约翰家的N 头奶牛正在排队游行抗议。一些奶牛情绪激动,约翰测算下来,排在第i 位的奶牛的理智度为Ai,数字可正可负。
约翰希望奶牛在抗议时保持理性,为此,他打算将这条队伍分割成几个小组,每个抗议小组的理智度之和必须大于或等于零。奶牛的队伍已经固定了前后顺序,所以不能交换它们的位置,所以分在一个小组里的奶牛必须是连续位置的。除此之外,分组多少组,每组分多少奶牛,都没有限制。
约翰想知道有多少种分组的方案,由于答案可能很大,只要输出答案除以1000000009 的余数即可。
输入输出格式
输入格式:
• 第一行:单个整数N,1 ≤ N ≤ 100000
• 第二行到第N + 1 行:第i + 1 行有一个整数Ai,−10^5 ≤ Ai ≤ 10^5
输出格式:
单个整数:表示分组方案数模1000000009 的余数
输入输出样例
4
2
3
-3
1
4
说明
解释:如果分两组,可以把前三头分在一组,或把后三头分在一组;如果分三组,可以把中间两头分在一组,第一和最后一头奶牛自成一组;最后一种分法是把四头奶牛分在同一组里。
分析:求方案数的解决方法可以用数学方法和dp,这道题我找不出数学数学方法来,只能dp.本来我的状态考虑为f[i][j]表示前j头牛分i组,可是这个i并不确定,而且O(n^3)的dp,直接超时了,那么我们去掉这一维,f[i]表示前i头牛的分组,f[i]=∑f[j](a[j] + a[j + 1] +...+a[i] >= 0),转换成前缀和就是s[j] <= s[i],那么怎么找j < i并且s[j] <= s[i]的数呢?当然是树状数组啦!但是由于s可能过大,需要先离散化一下.
dp中如果状态中的一维不能确定,可以省去这一维,通常可以用树状数组优化满足两个条件i<j&&s[i]<s[j]的题,数据太大需要离散化.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath> using namespace std; const int mod = ; int n,cnt = ,ans,c[]; struct node
{
int a,id,newid;
}e[]; bool cmp(node a,node b)
{
return a.a < b.a;
} bool cmp2(node a,node b)
{
return a.id < b.id;
} void add(int x,int d)
{
while (x <= cnt)
{
c[x] = (c[x] + d) % mod;
x += x & (-x);
}
} int query(int x)
{
int res = ;
while (x)
{
res = (res + c[x]) % mod;
x -= x & (-x);
}
return res;
} int main()
{
scanf("%d",&n);
e[].a = ;
e[].id = ;
for (int i = ;i <= n; i++)
{
int t;
scanf("%d",&t);
e[i].a = e[i-].a + t;
e[i].id = i;
}
sort(e,e + + n,cmp);
e[].newid = ;
for (int i = ; i <= n; i++)
{
if (e[i].a != e[i-].a)
e[i].newid = ++cnt;
else
e[i].newid = cnt;
}
sort(e,e + + n,cmp2);
add(e[].newid,);
for (int i = ; i <= n; i++)
{
ans = query(e[i].newid);
add(e[i].newid,ans);
}
printf("%d\n",ans); return ;
}
洛谷P2344 奶牛抗议的更多相关文章
- 洛谷2344 奶牛抗议(DP+BIT+离散化)
		
洛谷2344 奶牛抗议 本题地址:http://www.luogu.org/problem/show?pid=2344 题目背景 Generic Cow Protests, 2011 Feb 题目描述 ...
 - 洛谷 2344 奶牛抗议 Generic Cow Protests, 2011 Feb
		
[题解] 我们可以轻松想到朴素的状态转移方程,但直接这样做是n^2的.所以我们考虑采用树状数组优化.写法跟求逆序对很相似,即对前缀和离散化之后开一个权值树状数组,每次f[i]+=query(sum[i ...
 - P2344 奶牛抗议
		
P2344 奶牛抗议 题目背景 Generic Cow Protests, 2011 Feb 题目描述 约翰家的N 头奶牛正在排队游行抗议.一些奶牛情绪激动,约翰测算下来,排在第i 位的奶牛的理智度为 ...
 - 洛谷P2402 奶牛隐藏
		
洛谷P2402 奶牛隐藏 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛混乱的原因看题目描述) 题目描述 在一个农场里有n块田地. ...
 - 洛谷P2402 奶牛隐藏(网络流,二分答案,Floyd)
		
洛谷题目传送门 了解网络流和dinic算法请点这里(感谢SYCstudio) 题目 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛 ...
 - [洛谷P1842] 奶牛玩杂技
		
题目类型:贪心+证明,经典题 传送门:>Here< 题意:有\(N\)头奶牛,每个奶牛有一个重量\(W[i]\),力量\(S[i]\).定义每个奶牛的压扁程度为排在它前面的所有奶牛的总量之 ...
 - [洛谷P2124] 奶牛美容
		
洛谷题目链接:奶牛美容 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 6 16 ................ ..XXXX....XXX... ...XXXX... ...
 - [WC2002][洛谷P1578]奶牛浴场
		
洛谷题解里那个人可真是话多呢. 题目描述 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建造一个大型浴场.但是John的奶牛有一个奇怪的习惯,每 ...
 - 洛谷 P1578 奶牛浴场
		
https://www.luogu.org/problemnew/show/P1578 题解 另外这题有一些小坑,洛谷的题解里面有讲 #pragma GCC optimize("Ofast& ...
 
随机推荐
- win7下配置spark
			
1.安装jdk(配置JAVA_HOME,CLASSPATH,path) 2.安装scala(配置SCALA_HOME,path) 3.安装spark Spark的安装非常简单,直接去Download ...
 - 3.10-通过requests、BeautifulSoup、webbrowser模块的相关方法,爬取网页数据示例程序(一)
			
import requests,bs4res=requests.get('https://www.hao123.com/')print('res对象的类型:',type(res))res.raise_ ...
 - drupal CVE-2018-7600 复现
			
1.系统环境 Drupal 8.5 linux 主机 ruby 代码 2.原理说明 影响版本 Drupal 6.x,7.x,8.x 参考:CVE-2018-7600漏洞分析 3.利用 在Python2 ...
 - Facebook190亿美元收购WhatsApp
			
Facebook收购WhatsApp,前后只花费10天时间.这是Facebook迄今规模最大的一笔收购,可能也是史上最昂贵的一笔针对靠私人风投起家的企业的收购案. 2月9日,马克•扎克伯格(Mark ...
 - [linux] reboot和shutdown-r的区别
			
google看看: 先搜英文的资料 http://askubuntu.com/questions/441969/what-is-the-difference-between-reboot-and-sh ...
 - 使用Node.js 搭建http服务器  http-server 模块
			
1. 安装 http-server 模块 npm install http-server -g 全局安装 2.在需要的文件夹 启动 http-server 默认的端口是8080 可以使 ...
 - 20162328蔡文琛 Java课程总结
			
20162328 2016-2017-2<程序设计与数据结构>课程总结 一.每周作业.结对编程博客的链接汇总 预备作业01 20162328:表达对专业的期许.浅谈师生关系.对未来学习任务 ...
 - RIGHT-BICEP测试第二次程序
			
根据Right-BICEP单元测试的方法我对我写的第二次程序进行了测试: 测试一:测试能否控制使用乘除 测试二:测试是否能加括号 测试三:是否可以控制题目输出数量 测试四:能否控制输出方式,选择文件输 ...
 - DNS测试工具的使用(了解)
			
dig命令, host命令, nslookup命令,rndc命令 dig命令(直接测试DNS性能,不会查询/etc/hosts文件) dig [-t RR_TYPE] name [@SERVER] [ ...
 - Qt程序打包,自动拷贝依赖文件
			
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:Qt程序打包,自动拷贝依赖文件 本文地址:http://techieliang.com ...