扩展欧拉定理【洛谷P4139】 上帝与集合的正确用法
P4139 上帝与集合的正确用法
\(2^{2^{2^{\dots}}}\bmod p\)
卡最优解倒数第一祭。
带一下扩展欧拉定理就好了。
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int wx=10000017;
int isprime[wx],prime[wx],phi[wx];
int tot;
inline long long read(){
long long sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
}
void Euler_phi(){
memset(isprime,1,sizeof isprime);
phi[1]=1; isprime[1]=0;
for(int i=2;i<=10000000;i++){
if(isprime[i]){
prime[++tot]=i;
phi[i]=i-1;
}
for(int j=1;j<=tot&&i*prime[j]<=10000000;j++){
isprime[i*prime[j]]=0;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
}
long long ksm(long long a,long long b,long long mod){
long long re=1;
while(b){
if(b&1)re=re*a%mod;
a=a*a%mod;
b>>=1;
}
return re;
}
long long work(long long mod){
if(mod==1)return 0;
return ksm(2,work(phi[mod])+phi[mod],mod);
}
signed main(){
// for(long long i=1;i<=430000000;i++);
int T=read(); Euler_phi();
while(T--){
long long p=read();
printf("%lld\n",work(p));
}
return 0;
}
扩展欧拉定理【洛谷P4139】 上帝与集合的正确用法的更多相关文章
- 洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 题解-洛谷P4139 上帝与集合的正确用法
上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...
- 洛谷 P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- 洛谷P4139 上帝与集合的正确用法 拓欧
正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) ) ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...
- [洛谷P4139]上帝与集合的正确用法
题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...
- 【洛谷】P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天,上帝创造了一个世界的基本元素,称做“元”. 第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
- Luogu P4139 上帝与集合的正确用法
题目链接:Click here Solution: 这道题就考你会不会扩展欧拉定理,根据扩展欧拉定理可知 \[ a^b \equiv a^{(b\,mod\,\varphi(p))+\varphi(p ...
随机推荐
- SEL 类型
1.SEL类型的第一个作用, 配合对象/类来检查对象/类中有没有实现某一个方法 SEL sel = @selector(setAge:); Person *p = [Person new]; // 判 ...
- vue项目引入第三方js插件,单个js文件引入成功,使用该插件方法时报错(问题已解决)
1.引入第三方js文件,npm安装不了 2.控制台显示引入成功 3.在methods下使用 图片看不清请看下面代码 updateTime() { setInterval(()=>{ var cd ...
- [转]修改github已提交的用户名和邮箱
改变作者信息 为改变已经存在的 commit 的用户名和/或邮箱地址,你必须重写你 Git repo 的整个历史. 警告:这种行为对你的 repo 的历史具有破坏性.如果你的 repo 是与他人协同工 ...
- python操作mysql数据库系列-操作MySql数据库(二)
接口测试框架层级目录结构示意图: page目录下面的mysqlTest.py:存放的是mysql的操作代码 utils目录下面的helper.py:存放的是公共的配置方法 log目录log.md:存放 ...
- JavaWeb项目导入MyEclipse后变为JAVA项目项目【解决方法】
问题描述:之前有个项目是Java web的项目,但是后来我导入到我电脑里的myEclipse里后就变成了Java项目.查找了资料解决了,网上大部分都是说在eclipse里解决这个问题,在myEclip ...
- python之CSV文件格式
1.csv文件是以一些以逗号分隔的值 import csv filename = "wenjian.csv" with open(filename) as f: reader = ...
- Git & TortoiseGit
http://www.git-scm.com/download/ http://download.tortoisegit.org/ https://help.github.com/articles/g ...
- linux 命令学习-网络相关配置
网络配置相关 网卡配置文件:etc/sysconfig/network-scripts/ifcfg-eth0 DNS 配置文件 etc/resolv.conf 主机配置文件 etc/sysconfig ...
- Nginx根据用户请求的不同参数返回不同的json值
用户请求url:http://localhost:8000/getconfig?v=1.03.01,根据参数v=1.03.01或者其他的值返回不同的json值.如果用户请求不带该参数,则返回默认的js ...
- dede上传文件乱码问题解决
修改下列两个文件: /include/dialog/select_soft_post.php/include/dialog/select_soft.php 改: select_soft.php文件第1 ...