【HNOI 2016】序列
Problem
Description
给定长度为 \(n\) 的序列:\(a_1, a_2, \cdots , a_n\),记为 \(a[1 \colon n]\)。类似地,\(a[l \colon r]\)(\(1 \leq l \leq r \leq N\))是指序列:\(a_{l}, a_{l+1}, \cdots ,a_{r-1}, a_r\)。若 \(1\leq l \leq s \leq t \leq r \leq n\),则称 \(a[s \colon t]\)是 \(a[l \colon r]\) 的子序列。
现在有 \(q\) 个询问,每个询问给定两个数 \(l\) 和 \(r\),\(1 \leq l \leq r \leq n\),求 \(a[l \colon r]\) 的不同子序列的最小值之和。例如,给定序列
\(5, 2, 4, 1, 3\),询问给定的两个数为 \(1\) 和 \(3\),那么 \(a[1 \colon 3]\) 有 \(6\) 个子序列 \(a[1 \colon 1], a[2 \colon 2], a[3 \colon 3], a[1 \colon 2],a[2 \colon 3], a[1 \colon 3]\),这 \(6\) 个子序列的最小值之和为 \(5+2+4+2+2+2=17\)。
Input Format
输入文件的第一行包含两个整数 \(n\) 和 \(q\),分别代表序列长度和询问数。
接下来一行,包含 \(n\) 个整数,以空格隔开,第 \(i\) 个整数为 \(a_i\),即序列第 \(i\) 个元素的值。
接下来 \(q\) 行,每行包含两个整数 \(l\) 和 \(r\),代表一次询问。
Output Format
对于每次询问,输出一行,代表询问的答案。
Sample
Input
5 5
5 2 4 1 3
1 5
1 3
2 4
3 5
2 5
Output
28
17
11
11
17
Range
对于 \(100\%\) 的数据,\(1 \leq n,q \leq 100000 ,|a_i| \leq 10^9\)
Algorithm
莫队
Mentality
第一眼觉得做法和 \(HNOI2017\) 的影魔应该是一样的,然后发现由于这一题的区间最小值可能存在多个,那么影魔里的就完全不适用了 \(QwQ\) 。
那看着这个数据范围,我们能想到三种复杂度:\(nlog\) 、\(nlog^2\)、\(n\sqrt{n}\) 。
然后发现可以离线,询问是区间形式的,我们便不由得想到莫队了。
接下来考虑莫队里的计算步骤:从 \([l,r]\) -> \([l,r+1]\) 的增量,由于其他三个计算本质相同,不多做讨论。
首先,我们设 \(p\) 为区间 \([l,r+1]\) 的最小值所在位置,那么对于区间左端点在 \(l\sim p\) ,右端点在 \(r+1\) 的区间,它们的最小值肯定都是 \(a[p]\) 。则这一坨区间对答案的贡献为 \(a[p]*(p-l+1)\) 。
那剩下的左端点在 \(p+1\sim r\) 的区间的贡献呢?
其实我们可以稍加思考,就会发现我们应该考虑先处理出两个 \(ll[i],rr[i]\) 数组,分别是 \(i\) 左边第一个比 \(i\) 小的位置,\(i\) 右边第一个比 \(i\) 小的位置。
那么我们设 \(f_l[r+1]\) 右端点在 \(r+1\) ,而左端点在 \([1,r+1]\) 范围的区间的最小值之和:
\]
也即按照区间最小值分段,只要右端点固定,那么区间的最小值肯定是连续相同的,我们一个个区间去计算就好了。
然后我们观察到反正这个式子是从 \(ll[r+1]\) 把值转移上来的,那我们自然可以写出如下 \(DP\) 式:
\]
不难发现,对于原式子中,我们沿着一段段连续的区间最小值计算答案,而对于其中任意一个 "\(ll[i]\)" ,我们只需要把后面那截砍掉,也即 \(f_l[r+1]-f_l[ll[i]]\) ,这显然就是右端点在 \(r+1\) ,左端点在 \([ll[i]+1,r+1]\) 这段范围内的区间最小值之和。
由于 \(p\) 已经是区间内最小的位置了,所以对于 \(p+1\sim r\) 这些点,它们的 \(ll[i]\) 的值要么就是 \(a[p]\) ,要么就不小于 \(a[p]\)。所以 \(p\) 一定是计算 \(r+1\) 的答案中的某个 "\(ll[i]\)" ,那我们只需要用 \(f_l[r+1]\) 减去 \(f_l[p]\) 即可得到左端点在 \(p+1\sim r\) 的区间的答案。
总结一下,\([l,r]\) -> \([l,r+1]\) 的增量为:
\]
对于 \([l,r]\) -> \([l-1,r]\) 也同理,我们只需要处理出一个类似的 \(f_r\) 数组即可。
Code
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
int n, size, Q, a[100001];
int minn[100001][18], pos[100001][18], Log[100001];
int top, ll[100001], rr[100001], stack[100001];
int L, R;
long long ans, Ans[100001], fr[100001], fl[100001];
struct node {
int l, r, d;
} k[100001];
bool cmp(node a, node b) {
return (a.l / size) == (b.l / size) ? a.r < b.r : (a.l / size) < (b.l / size);
}
int find(int l, int r) {
if (l > r) return 0;
if (l == r) return pos[l][0];
int x = Log[r - l], p;
return minn[l][x] > minn[r - (1 << x) + 1][x] ? pos[r - (1 << x) + 1][x]
: pos[l][x];
} //寻找最小值位置
void init() {
cin >> n >> Q;
size = sqrt(n);
int now = 2;
for (int i = 2; i <= (int)1e5; i++) {
Log[i] = Log[i - 1];
if (i == now) Log[i]++, now <<= 1;
} //预处理对数
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
minn[i][0] = a[i], pos[i][0] = i;
}
for (int i = 1; i <= Q; i++) scanf("%d%d", &k[i].l, &k[i].r), k[i].d = i;
sort(k + 1, k + Q + 1, cmp); //离线询问
for (int j = 1; j <= 17; j++)
for (int i = 1; i <= n - (1 << j) + 1; i++) {
pos[i][j] = pos[i][j - 1],
minn[i][j] = min(minn[i][j - 1], minn[i + (1 << (j - 1))][j - 1]);
if (minn[i][j] != minn[i][j - 1])
pos[i][j] = pos[i + (1 << (j - 1))][j - 1];
} //预处理 rmq
stack[top = 0] = 0;
for (int i = 1; i <= n; i++) {
while (top && a[stack[top]] >= a[i]) top--;
ll[i] = stack[top], stack[++top] = i;
}
for (int i = 1; i <= n; i++) fl[i] = fl[ll[i]] + 1ll * (i - ll[i]) * a[i];
stack[top = 0] = n + 1;
for (int i = n; i >= 1; i--) {
while (top && a[stack[top]] >= a[i]) top--;
rr[i] = stack[top], stack[++top] = i;
} //单调栈处理 ll,rr 数组
for (int i = n; i >= 1; i--)
fr[i] = fr[rr[i]] + 1ll * (rr[i] - i) * a[i]; //计算 fl,fr 数组
}
long long workr(int x) {
int p = find(L, x);
return 1ll * a[p] * (p - L + 1) + fl[x] - fl[p];
}
long long workl(int x) {
int p = find(x, R);
return 1ll * a[p] * (R - p + 1) + fr[x] - fr[p];
}
void solve() {
L = k[1].l, R = k[1].l - 1;
for (int i = 1; i <= Q; i++) {
while (R < k[i].r) ans += workr(++R);
while (L > k[i].l) ans += workl(--L);
while (R > k[i].r) ans -= workr(R--);
while (L < k[i].l) ans -= workl(L++);
Ans[k[i].d] = ans;
}
}
int main() {
init(); //预处理和读入
solve();
for (int i = 1; i <= Q; i++) printf("%lld\n", Ans[i]);
}
【HNOI 2016】序列的更多相关文章
- [HNOI 2016]序列
Description 题库链接 给你一个长度为 \(n\) 的序列 \(A\) ,给出 \(q\) 组询问.每次询问 \([l,r]\) ,求该区间内所有的子序列中最小值的和. \(1\leq n, ...
- bzoj 4540 [HNOI 2016] 序列 - 莫队算法 - Sparse-Table - 单调栈
题目传送门 传送点I 传送点II 题目大意 给定一个长度为$n$的序列.询问区间$[l, r]$的所有不同的子序列的最小值的和. 这里的子序列是连续的.两个子序列不同当且仅当它们的左端点或右端点不同. ...
- [HNOI 2016]树
Description 题库链接 给你一棵 \(N\) 个节点根节点为 \(1\) 的有根树,结点的编号为 \(1\sim N\) :我们称这颗树为模板树.需要通过这棵模板树来构建一颗大树.构建过程如 ...
- 「HNOI 2016」 序列
\(Description\) 给你一个序列,每次询问一个区间,求其所有子区间的最小值之和 \(Solution\) 这里要用莫队算法 首先令\(val\)数组为原序列 我们考虑怎么由一个区间\([l ...
- hnoi 2016 省选总结
感觉省选好难的说...反正我数据结构太垃圾正解想到了也打不出来打一打暴力就滚粗了! DAY1 0+20+30 DAY2 60-20+0+60 最后170-20分,暴力分还是没有拿全! 然而这次是给了5 ...
- HNOI 2016 省队集训日记
第一天 DeepDarkFantasy 从东京出发,不久便到一处驿站,写道:日暮里. ——鲁迅<藤野先生> 定义一个置换的平方为对1~n的序列做两次该置换得到的序列.已知一个置换的平方, ...
- 【HNOI 2016】网络
Problem Description 一个简单的网络系统可以被描述成一棵无根树.每个节点为一个服务器.连接服务器与服务器的数据线则看做一条树边.两个服务器进行数据的交互时,数据会经过连接这两个服务器 ...
- [BZOJ 4537][Hnoi 2016]最小公倍数
传送门 并查集+分块 看到题目可以想到暴力做法, 对于每个询问, 将所有a和b小于等于询问值的的边加入图中(用并查集), 如果询问的u和v在一个联通块中, 且该联通块的maxa和maxb均等与询问的a ...
- 【BZOJ 4539】【HNOI 2016】树
http://www.lydsy.com/JudgeOnline/problem.php?id=4539 今天测试唯一会做的一道题. 按题目要求,如果暴力的把模板树往大树上仍,最后得到的大树是$O(n ...
随机推荐
- 使用LVM进行分区扩展的记录
场景:在磁盘分区空间不够的情况下,要扩展分区空间 因为使用的是虚拟机,所以可以对原有的硬盘上进行扩展,而不需要新增一个硬盘 1.扩展磁盘并使用fdisk工具进行分区 虚拟机关机后对磁盘进行扩展,扩展到 ...
- python 查找日志关键字
1.抓取出含有关键字”xiaoming”的行 2.在上一个问题的基础上,假设所在行的格式为location=xiaoming, value=xxx,请筛选出value值 #!/usr/bin/pyth ...
- python 图像处理,画一个正弦函数
import numpy as np from PIL import Image import matplotlib.pyplot as plt import math size = 300 new_ ...
- stm32定时器输出移相PWM(非主从模式)
背景:由于项目需要,需要stm32输出任意相角度的PWM 前提知识: 1.stm32定时器的Tim,一般有多个OC.具体差别根据型号来定. 2.定时器的使能,理论上是多个通道同时使能 3.TIM_OC ...
- 《linux就该这么学》第十六节课:第16,17章,Squid服务和iscsi网络存储
第十六章 squid总结: 正向代理:yum 安装后清空防火墙即可正常使用,客户端设置浏览器 透明正向代理:vim /etc/squid/squid.conf 59行:http_port 312 ...
- oracle修改审计功能
oracle修改审计功能 如果没有关闭审计功能,审计日志文件默认保存在位置为$ORACLE_BASE/admin/$ORACLE_SID/adump/ 关闭审计:alter system set au ...
- .Net Core技术研究-Span<T>和ValueTuple<T>
性能是.Net Core一个非常关键的特性,今天我们重点研究一下ValueTuple<T>和Span<T>. 一.方法的多个返回值的实现,看ValueTuple<T> ...
- 网络-01-端口号-linux端口详解大全
0 | 无效端口,通常用于分析操作系统1 | 传输控制协议端口服务多路开关选择器2 | 管理实用程序3 | 压缩进程5 | 远程作业登录7 | 回显9 | 丢弃11 | 在线用户13 | 时间17 | ...
- 'scope' is defined but never used
错误如下: 解决办法: 1.scope这个属性在最新版本vue已经被弃用,升级成slot-scope了 ,所以属性名应该改为slot-scope. 2.如上所示,我们发现,还是有报错,原因是vetur ...
- 利用python把成绩用雷达图表示出来
第一步:知道自己的成绩. 第二步:插入代码. import numpy as np import matplotlib.pyplot as plt import matplotlib matplotl ...