数据存储演进思路一:单库单表

单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。

数据存储演进思路二:单库多表

随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能。如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待。

可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的user_0000,user_0001等表,user_0000 + user_0001 + …的数据刚好是一份完整的数据。

数据存储演进思路三:多库多表

随着数据量增加也许单台DB的存储空间不够,随着查询量的增加单台数据库服务器已经没办法支撑。这个时候可以再对数据库进行水平区分。

Mysql数据库分库分表规则

设计表的时候需要确定此表按照什么样的规则进行分库分表。例如,当有新用户时,程序得确定将此用户信息添加到哪个表中;同理,当登录的时候我们得通过用户的账号找到数据库中对应的记录,所有的这些都需要按照某一规则进行。
路由

通过分库分表规则查找到对应的表和库的过程。如分库分表的规则是user_id mod 4的方式,当用户新注册了一个账号,账号id的123,我们可以通过id mod 4的方式确定此账号应该保存到User_0003表中。当用户123登录的时候,我们通过123 mod 4后确定记录在User_0003中。

下面是分库分表产生的问题,及注意事项

1.   分库分表维度的问题

假如用户购买了商品,需要将交易记录保存取来,如果按照用户的纬度分表,则每个用户的交易记录都保存在同一表中,所以很快很方便的查找到某用户的购买情况,但是某商品被购买的情况则很有可能分布在多张表中,查找起来比较麻烦。反之,按照商品维度分表,可以很方便的查找到此商品的购买情况,但要查找到买人的交易记录比较麻烦。

所以常见的解决方式有:

a.通过扫表的方式解决,此方法基本不可能,效率太低了。
     b.记录两份数据,一份按照用户纬度分表,一份按照商品维度分表。
     c.通过搜索引擎解决,但如果实时性要求很高,又得关系到实时搜索。

2.   联合查询的问题

联合查询基本不可能,因为关联的表有可能不在同一数据库中。

3.   避免跨库事务

避免在一个事务中修改db0中的表的时候同时修改db1中的表,一个是操作起来更复杂,效率也会有一定影响。

4.   尽量把同一组数据放到同一DB服务器上

例如将卖家a的商品和交易信息都放到db0中,当db1挂了的时候,卖家a相关的东西可以正常使用。也就是说避免数据库中的数据依赖另一数据库中的数据。

一主多备

在实际的应用中,绝大部分情况都是读远大于写。Mysql提供了读写分离的机制,所有的写操作都必须对应到Master,读操作可以在Master和Slave机器上进行,Slave与Master的结构完全一样,一个Master可以有多个Slave,甚至Slave下还可以挂Slave,通过此方式可以有效的提高DB集群的QPS.

所有的写操作都是先在Master上操作,然后同步更新到Slave上,所以从Master同步到Slave机器有一定的延迟,当系统很繁忙的时候,延迟问题会更加严重,Slave机器数量的增加也会使这个问题更加严重。

此外,可以看出Master是集群的瓶颈,当写操作过多,会严重影响到Master的稳定性,如果Master挂掉,整个集群都将不能正常工作。

所以,1. 当读压力很大的时候,可以考虑添加Slave机器的分式解决,但是当Slave机器达到一定的数量就得考虑分库了。 2. 当写压力很大的时候,就必须得进行分库操作。

MySQL使用为什么要分库分表?

可以用说用到MySQL的地方,只要数据量一大, 马上就会遇到一个问题,要分库分表.
这里引用一个问题为什么要分库分表呢?MySQL处理不了大的表吗?
其实是可以处理的大表的.我所经历的项目中单表物理上文件大小在80G多,单表记录数在5亿以上,而且这个表
属于一个非常核用的表:朋友关系表.

但这种方式可以说不是一个最佳方式. 因为面临文件系统如Ext3文件系统对大于大文件处理上也有许多问题.
这个层面可以用xfs文件系统进行替换.但MySQL单表太大后有一个问题是不好解决: 表结构调整相关的操作基
本不在可能.所以大项在使用中都会面监着分库分表的应用.

从Innodb本身来讲数据文件的Btree上只有两个锁, 叶子节点锁和子节点锁,可以想而知道,当发生页拆分或是添加
新叶时都会造成表里不能写入数据.
所以分库分表还就是一个比较好的选择了.

那么分库分表多少合适呢?
经测试在单表1000万条记录一下,写入读取性能是比较好的. 这样在留点buffer,那么单表全是数据字型的保持在
800万条记录以下, 有字符型的单表保持在500万以下.

如果按 100库100表来规划,如用户业务:
500万*100*100 = 50000000万 = 5000亿记录.

心里有一个数了,按业务做规划还是比较容易的.

分库分表后能解决我们的性能问题,但是也带来了很多其他的问题:我总结了一下分库分表后的坑:

1.分完之后只能直接按分片键查询,为了避免扫所有分片,如果按非分片键查询,在OLTP环境中得走搜索引擎。数据库和搜索引擎同步数据靠binlog
2.按不同维度查询,比如买家维度和卖家维度查订单。除了走搜索引擎之外,还可以在不同的系统中各写一条订单数据。
3.ID得通过ID生成器。
4.有热点数据问题,比如一个超级买家,买了好多种商品,然而还有不怎么热的买家,没什么订单。解决方法两种,热点数据拿出来放到单独的系统。或者按数据块分片,比如十种商品算一个块,但这种方法具体细节我忘了,只是听人分享过。
5.跨库事务问题,NPC一般不用,补偿是一种方法,TCC是一种方法,TCC的变种,比如SAGA比如XTS,努力送达是一种方法
6.数据扩展问题,可以看看阿里的愚公。我个人觉得还半夜停机维护比较靠谱。
7.分页的坑,前期可以用中间件Limit,中期得走搜索引擎,后期OLAP
8.可用性问题,依赖数据库高可用方案。据说会出现 sharding 算法 会因为网络抖动 造成部分分区错误 导致片出问题
9.配置中心问题。尽量使用配置中心,不要用zookeeper
10.非代理模式,就是JDBC路由模式 每个client都会对 db开启pool ,数据库可能会死在数据库连接上,一种方法是定制
Mysql,设置高低水位,让超过数据库处理能力的数据库连接排队。第二种方法是在JDBC路由模式之上做Mysql的Proxy

MYSQL数据库数据拆分之分库分表总结的更多相关文章

  1. <转>MYSQL数据库数据拆分之分库分表总结

    数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的 ...

  2. MYSQL数据库数据拆分之分库分表总结 (转)

      数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数 ...

  3. MySQL数据库之互联网常用分库分表方案

    一.数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值.在业务Service来看就是,可用数据库连接少甚至无连接可用.接下来就 ...

  4. 一种可以避免数据迁移的分库分表scale-out扩容模式

    转自: http://jm.taobao.org/ 一种可以避免数据迁移的分库分表scale-out扩容方式 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星 ...

  5. mysql(5):主从复制和分库分表

    主从复制集群 概念:主从复制是指数据可以从一个MySQL数据库服务器主节点复制到一个或多个从节点. 使用场景: 读写分离:使用主从复制,让主库负责写,从库负责读,这样,即使主库出现了锁表的情景,通过读 ...

  6. (转) MySQL分区与传统的分库分表

    传统的分库分表 原文:http://blog.csdn.net/kobejayandy/article/details/54799579 传统的分库分表都是通过应用层逻辑实现的,对于数据库层面来说,都 ...

  7. MySQL全面瓦解28:分库分表

    1 为什么要分库分表 物理服务机的CPU.内存.存储设备.连接数等资源有限,某个时段大量连接同时执行操作,会导致数据库在处理上遇到性能瓶颈.为了解决这个问题,行业先驱门充分发扬了分而治之的思想,对大库 ...

  8. 一种可以避免数据迁移的分库分表scale-out扩容方式

    原文地址:http://jm-blog.aliapp.com/?p=590 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星期1的数据在一个库/表,或所有?月 ...

  9. [转]一种可以避免数据迁移的分库分表scale-out扩容方式

    原文地址:http://jm-blog.aliapp.com/?p=590 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星期1的数据在一个库/表,或所有?月 ...

随机推荐

  1. js变量传递

    基本类型.引用类型 基本类型: undefined.Null.Boolean.Number.String五种 (简单的数据段);引用类型: object (由多个值构成). 两种类型在使用上的区别: ...

  2. Interactive map of Linux kernel

    Interactive map of Linux kernel 2.6.36  : http://www.makelinux.net/kernel_map/ 注: 图中函数名带连接

  3. Vuejs自定义select2指令

    在做select2插件的时候遇到一些坑,最终解决如下: Vue.directive('select2', { inserted: function (el, binding, vnode) { var ...

  4. 在Windows Server2016中安装SQL Server2016

    SQL Server2016安装硬.软件条件:点击打开链接 WinServer2016的安装参见: 在虚拟机中安装Windows Server2016 1. SQL Server2016下载地址: - ...

  5. 使用Anaconda操作numpy库和matplotlib图形库

    慢慢来~~~ import numpy as np import matplotlib.pyplot as plt # 生成数据 x = np.arange(0, 6, 0.1) # 以0.1为单位, ...

  6. 在服务器上实现SSH(Single Stage Headless)

    服务器上ssh实现 写在前面:这只是我在服务器上的环境实现的,仅供参考.要根据自己系统的环境做出修改. ==github源码(https://github.com/mahyarnajibi/SSH)= ...

  7. 027 storm面试小题

    1.大纲 Storm工作原理是什么? 流的模式是什么?默认是什么? 对于mapreduce如何理解? Storm的特点和特性是什么? Storm组件有哪些? 2.Storm工作原理是什么? 相对于ha ...

  8. yarn一直在跑一个用户为dr.who的application

    现象: 访问yarn:8088页面发现一直有任务在跑如图: 用户为dr.who,问下内部使用人员,都没有任务在跑: 结论: 恭喜你,你中毒了,攻击者利用Hadoop Yarn资源管理系统REST AP ...

  9. 操作系统PV编程题目总结一

    1.今有一个文件F供进程共享,现把这些进程分为A.B两组,规定同组的进程可以同时读文件F:但当有A组(或B组)的进程在读文件F时就不允许B组(或A组)的进程读文件F.试用P.V操作(记录型信号量)来进 ...

  10. 支持不同Android设备,包括:不同尺寸屏幕、不同屏幕密度、不同系统设置

    Some of the important variations that you should consider include different languages, screen sizes, ...