归一化交叉相关Normalization cross correlation (NCC)
归一化交叉相关Normalization cross correlation (NCC)
NCC正如其名字,是用来描述两个目标的相关程度的,也就是说可以用来刻画目标间的相似性。一般NCC也会被用来进行图像匹配,即在一个图像中搜索与一小块已知区域的NCC最高的区域作为对应匹配,然后对准整幅图像。
假设两幅图像
,那么其NCC可如下计算:

其中
表示点乘运算。
比如下面两幅图像,我们想对齐


首先在一幅图像中选取两个图像都有的区域作为templete

然后在另一幅图像中选取包含templete的区域

最终对齐的结果如下

- function NCC
- close all
- part2 =imread('part1.png');
- part1 = imread('part2.png');
- imshow(part2);title('part2')
- figure, imshow(part1);title('part1');
- % 选取template和搜索区域region. Note:template的大小必须小于region
- figure,
- [sub_part2,rect_part2]=imcrop(part2);% template
- [sub_part1,rect_part1]=imcrop(part1);% region
- figure, imshow(sub_part2)
- figure, imshow(sub_part1);
- [x,y,z] = normcorr2(double(sub_part2(:,:,1)),double(sub_part1(:,:,1)));
- figure,surf(x,y,z),shading flat
- %% 寻找偏置
- [~,imax]=max(z(:));%
- [yoffset,xoffset]=ind2sub(size(z),imax(1));
- %% 图像对齐
- % 配对点在第一幅图像中到边界的距离
- rect_part1=floor(rect_part1);
- left1=rect_part1(1)+xoffset;
- right1=size(part1,2)-left1;
- up1=rect_part1(2)+yoffset;
- down1 = size(part1,1)-left1;
- % 配对点在第二幅图像中到边界的距离
- rect_part2=floor(rect_part2);
- left2=rect_part2(1);
- right2=size(part2,2)-left2;
- up2=rect_part2(2);
- down2 = size(part2,1)-up2;
- img=zeros(max(up1,up2)+max(down1,down2)+1,max(left1,left2)+max(right1,right2)+1,size(part1,3));
- sx=max(left1,left2)+1;
- sy=max(up1,up2)+1;
- img(sy-up1+1:sy-up1+size(part1,1),sx-left1+1:sx-left1+size(part1,2),:)=part1;
- img(sy-up2+1:sy-up2+size(part2,1),sx-left2+1:sx-left2+size(part2,2),:)=part2;
- imshow(uint8(img));
- end
- function [x,y,z]=normcorr2(I1,I2)
- % I1,I2是单通道图像,即矩阵
- % I1 is template
- % I2 is the region where match pairs are searched
- [m1,n1]=size(I1);
- [m2,n2]=size(I2);
- z=conv2(I2,rot90(I1,2),'valid');
- im2=cumsum(I2.^2,1);
- im2=cumsum(im2,2);
- sum1=sum(sum(I1.^2,1),2);
- % nz=zeros(m2-m1+1,n2-n1+1);
- wrapIm2=zeros(1+m2,1+n2);
- wrapIm2(2:end,2:end)=im2;
- nz=(wrapIm2(m1+1:m2+1,n1+1:n2+1)+wrapIm2(1:m2-m1+1,1:n2-n1+1)-wrapIm2(1:m2-m1+1,n1+1:n2+1)-wrapIm2(m1+1:m2+1,1:n2-n1+1))*sum1;
- nz=sqrt(nz);
- z=z./nz;
- [x,y]=meshgrid(1:n2-n1+1,1:m2-m1+1);
- end





有些文献在计算卷积的时候,总说要把矩阵逆排序之后再对应相乘,包括conv2这个函数也是这么计算的。但实际上我们有一个templete和region,直接就是对应位置乘积之后作为卷积结果,也只有这样才能保证在匹配的位置处NCC系数最大,所以在代码里,我先对templete进行了逆序操作,在使用conv2卷积。
另外matlab2016添加了image registration 工具箱,里面可以直接计算NCC系数了,具体参见
http://cn.mathworks.com/help/images/examples/registering-an-image-using-normalized-cross-correlation.html.
归一化交叉相关Normalization cross correlation (NCC)的更多相关文章
- 交叉验证(Cross Validation)简介
参考 交叉验证 交叉验证 (Cross Validation)刘建平 一.训练集 vs. 测试集 在模式识别(pattern recognition)与机器学习(machine lea ...
- 关于交叉熵(cross entropy),你了解哪些
二分~多分~Softmax~理预 一.简介 在二分类问题中,你可以根据神经网络节点的输出,通过一个激活函数如Sigmoid,将其转换为属于某一类的概率,为了给出具体的分类结果,你可以取0.5作为阈值, ...
- S折交叉验证(S-fold cross validation)
S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...
- 几种交叉验证(cross validation)方式的比较
模型评价的目的:通过模型评价,我们知道当前训练模型的好坏,泛化能力如何?从而知道是否可以应用在解决问题上,如果不行,那又是哪里出了问题? train_test_split 在分类问题中,我们通常通过对 ...
- 【机器学习基础】交叉熵(cross entropy)损失函数是凸函数吗?
之所以会有这个问题,是因为在学习 logistic regression 时,<统计机器学习>一书说它的负对数似然函数是凸函数,而 logistic regression 的负对数似然函数 ...
- 关于交叉熵损失函数Cross Entropy Loss
1.说在前面 最近在学习object detection的论文,又遇到交叉熵.高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个 ...
- 交叉验证(cross validation)
转自:http://www.vanjor.org/blog/2010/10/cross-validation/ 交叉验证(Cross-Validation): 有时亦称循环估计, 是一种统计学上将数据 ...
- 【深度学习】批归一化(Batch Normalization)
BN是由Google于2015年提出,这是一个深度神经网络训练的技巧,它不仅可以加快了模型的收敛速度,而且更重要的是在一定程度缓解了深层网络中"梯度弥散"的问题,从而使得训练深层网 ...
- TensorFlow 实战(一)—— 交叉熵(cross entropy)的定义
对多分类问题(multi-class),通常使用 cross-entropy 作为 loss function.cross entropy 最早是信息论(information theory)中的概念 ...
随机推荐
- mysql命令总结
统计全库数据量: use information_schema; SELECT TABLE_NAME, (DATA_LENGTH) as DataM , (INDEX_LENGTH) as Index ...
- linux rpm安装apache php mysql
CentOS 可以通过 yum 安装: yum -y install httpd php php-mysql mysql-serverservice httpd status|start|stop| ...
- JAVA中获取当前系统时间及格式转换
JAVA中获取当前系统时间 一. 获取当前系统时间和日期并格式化输出: import java.util.Date;import java.text.SimpleDateFormat; publi ...
- Rabbitmq Exchange Type 说明
Exchange在定义的时候是有类型的,以决定到底是哪些Queue符合条件,可以接收消息 fanout 所有bind到此exchange的queue都可以接收消息 direct 通过routingKe ...
- CSS隐藏多余文字的几个方法
通常偏移掉字体的方式是 (1)使用text-indent:-9999px; 可是他有一个局限性 他只适用于块级元素block而我们往往有时候想偏移掉的a上的字体所以问题就来了text-indent:- ...
- V8 的 typeof null 返回 "undefined" 的 bug 是怎么回事
1997 年,IE 4.0 发布,带来的众多新特性中有一个对未来“影响深远”的 DOM API:document.all.在随后的 6 年里,IE 的市场占有率越来越高,直到 2003 年的 95%. ...
- 【译文】 GC 安全点 和安全区域
原文链接 : here 根引用 Root references 一个实例死了,意味着它变得无用.只用程序员知道一个实例是否已经无用.为了让程序知道一个实例是否已经无用,我们可以使用编译器分析,引用 ...
- Java虚拟机 safepoints 初探
safepoint的定义很不规范,还跟JVM的具体实现有关,我们的讨论主要针对Hotspot VM. 先看看openjdk的官方解释: http://openjdk.java.net/groups/ ...
- ICP 算法
ICP 算法是一种点云到点云的配准方法. 在SLAM中通过空间点云的配准(可以通过相机或者3D激光雷达获取点云数据),可以估计相机运动(机器人运动,旋转矩阵R与平移向量t),累积配准,并不断回环检测, ...
- php文件类
1.需求 了解php对文件的一些操作 2.例子 写了一个类,可以操作文件,包含增,删,查 <?php class myfile{ public function write_file($stri ...