一.Pandas

Python Data Analysis Library或Pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

二.Series

Series是一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近,其区别是List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型。

1.创建

# 通过list创建Series
s1 = pd.Series([7, 3, 6, 2, 9, 5, 8])
# 通过dict创建Series
s2 = pd.Series({"a":1, "b":2, "c":3})
# 通过list创建Series,并指定index
s3 = pd.Series([5, 2, 7, 4],["a", "b", "c", "b"])

2.选取

# 获取前3个数据
s1.head(3)
# 获取后3个数据
s1.tail(3)
# 获取index为2的数据
s1[2]
# 获取1<=index<4的数据
s1[1:4]
# 获取index>3的数据
s1[s1.index>3]
# 获取数据值>5的数据
s1[s1>5]

3.增加、删除、修改

# 增加数据index=8
s1[8] = -1
# 删除数据index=3,不修改原Series
s1 = s1.drop(3)
# 对1<=index<3的数据赋值30
s1[1:3] = 30
# 对index为4,6的数据赋值50
s1[4, 6] = 50

三.DataFrame

DataFrame是二维的表格型数据结构。可以将DataFrame理解为Series的容器。

1.创建

# 通过dict创建DataFrame
data = {'name':["google", "amazon", "apple", "youtube", "oracle"], 'age':[33, 44, 11, 66, 44], "money" : [400, 200, 100, 800, 500]}
df1 = pd.DataFrame(data, columns = ["name", "age", "money"])

2.时间序列类型index

# 月
dates = pd.date_range('2017-10-08', periods = 10, freq = "M")
# 天
dates = pd.date_range('2017-10-08', periods = 10, freq = "D")
# 时
dates = pd.date_range('2017-10-08', periods = 10, freq = "H")

3.选取

# 获取前3行数据
df1.head(3)
# 获取后3行数据
df1.tail(3)
# 获取列
df1.name, df1['name'], df1[["name", "money"]]
# 获取行
df1[0:3], df1.loc[0:3]
# 同时获取行列
df1.loc[0:3, ["name", "money"]]

4.增加、删除、修改

# 增加列
df1["new"] = 6
# 删除列,不修改原DataFrame
df1 = df1.drop("new", axis = 1)
# 增加行,修改原DataFrame
df1.loc[df1.index.max() + 1] = {"name": "microsoft", "age": 70, "money": 300}
# 增加行,不修改原DataFrame
df1 = df1.append([{"name": "facebook", "age": 701, "money": 900}], ignore_index = True)
# 删除行,不修改原DataFrame
df1 = df1.drop([2])
# 修改数据
df1.loc[5,"age"] = 888
df1.loc[8:10, ["age", "money"]] = [11, 222]

5.WHERE

# 过滤数据,使用DataFrame.dtypes查看数据类型
df1[df1["age"] > 30]
df1[(df1["age"] > 30) & (df1["money"] < 600)], df1[(df1.age > 40) & (df1.money < 600)]
df1[df1["name"].isin(["amazon", "youtube"])]

6.DISTINCT

# 去重
df1.age.drop_duplicates()
df1[["age", "money"]].drop_duplicates()

7.JOIN

# 联接
df3 = pd.merge(df1, df2, how="left", left_on = "name", right_on = "name")
df3 = pd.merge(df1, df2, how="right", left_on = "name", right_on = "name")

8.GROUP BY

# 分组
df1.groupby("age")["money"].sum()
df1.groupby(["age", "name"])["money"].count()

9.ORDER BY

# 排序
df1.sort_values("age", ascending=True)
df1.sort_values(["age", "money"], ascending=[True, False])

10.UNION

# 合并
df2 = df1.copy(True)
df3 = pd.concat([df1,df2], ignore_index = True)
df3 = df1.append(df2, ignore_index = True)

11.导入和保存

Excel格式需要安装openpyxl、xlrd包

# 保存为csv格式
df1.to_csv("data.csv", encoding="utf-8")
# 从csv文件读取
df1 = pd.read_csv("data.csv")
# 保存为excel格式
df1.to_excel("data.xlsx", sheet_name = "Sheet1", encoding="utf-8")
# 从excel文件读取
df1 = pd.read_excel("data.xlsx", sheet_name = "Sheet1")

Pandas常用函数入门的更多相关文章

  1. pandas常用函数之shift

    shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会 ...

  2. pandas常用函数之diff

    diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下: index value1 A 0 B 1 C 2 D 3 如果执行 ...

  3. pandas 常用函数整理

    pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame im ...

  4. 【转载】pandas常用函数

    原文链接:https://www.cnblogs.com/rexyan/p/7975707.html 一.import语句 import pandas as pd import numpy as np ...

  5. pandas常用函数

    1. df.head(n): 显示数据前n行,不指定n,df.head则会显示所有的行 2. df.columns.values获取所有列索引的名称 3. df.column_name: 直接获取列c ...

  6. 整理 pandas 常用函数

    1. df.head(n): 显示数据前n行,不指定n,df.head则会显示所有的行 2. df.columns.values获取所有列索引的名称 3. df.column_name: 直接获取列c ...

  7. 5.2 pandas 常用函数清单

    文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', 'C'...] 自定义列 ...

  8. python,pandas常用函数

    一.rename,更改df的列名和行索引 df=pd.DataFrame(np.arange(,).reshape(,)) print(df) print(type(df)) 结果为: <cla ...

  9. pandas 常用函数

随机推荐

  1. EF 6.0

    最近又开始研究EF框架了 哎 搞的东西太杂了 网上的参考了一篇博客 但是他是基于EF 4.0之前做的 所以自己基于他的博客来构造EF 6.0的使用基础 命名空间不同: 旧版本:using System ...

  2. Print Article hdu 3507 一道斜率优化DP 表示是基础题,但对我来说很难

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  3. C - Coin Change (III)(多重背包 二进制优化)

    C - Coin Change (III) Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  4. 5分钟教你玩转 sklearn 机器学习(上)

    假期结束,你的状态有没有回归?那么,放空脑袋后,先来学习学习,欢迎大家继续关注腾讯云技术社区. 作者:赵成龙 这是一篇很难写的文章,因为我希望这篇文章能对大家有所帮助.我不会给大家介绍机器学习,数据挖 ...

  5. 简单说明如何设置系统中的NLS_LANG环境变量

    概述:本地化是系统或软件运行的语言和文化环境.设置NLS_LANG环境参数是规定Oracle数据库软件本地化行为最简单的方式.NLS_LANG参数不但指定了客户端应用程序和Oracle数据库所使用的语 ...

  6. vue + ajax + php 接口的使用小接

    vue + ajax + php 接口的使用小接 前端代码: (获取用户信息,并渲染页面) userinfor.html <!DOCTYPE html> <html lang=&qu ...

  7. 配置eNSP和本地电脑上的网卡相连,从而直接从本地电脑连接设备

  8. Linux基本符号

    Linux环境下一些常用的符号 ; 多个命令的分隔符 / 根目录或路径分隔符 > 重定向,数据沿箭头方向流动,原来文件内容会被丢弃 >> 追加重定向,在原来文件结尾追加内容 .. 上 ...

  9. CSS3实现3D旋转相册

    静态效果图: 代码如下: <!doctype html><html lang="en"><head> <meta charset=&quo ...

  10. phpstudy升级mysql数据库

    因为MySQL支持全文索引的只有5.6以上,而我下的phpstudy只有5.5的版本,在导入数据库的时候因为该数据库的表内有使用全文索引,因此必须升级phpstudy的mysql版本,这里就把自己当升 ...