一.Pandas

Python Data Analysis Library或Pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

二.Series

Series是一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近,其区别是List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型。

1.创建

# 通过list创建Series
s1 = pd.Series([7, 3, 6, 2, 9, 5, 8])
# 通过dict创建Series
s2 = pd.Series({"a":1, "b":2, "c":3})
# 通过list创建Series,并指定index
s3 = pd.Series([5, 2, 7, 4],["a", "b", "c", "b"])

2.选取

# 获取前3个数据
s1.head(3)
# 获取后3个数据
s1.tail(3)
# 获取index为2的数据
s1[2]
# 获取1<=index<4的数据
s1[1:4]
# 获取index>3的数据
s1[s1.index>3]
# 获取数据值>5的数据
s1[s1>5]

3.增加、删除、修改

# 增加数据index=8
s1[8] = -1
# 删除数据index=3,不修改原Series
s1 = s1.drop(3)
# 对1<=index<3的数据赋值30
s1[1:3] = 30
# 对index为4,6的数据赋值50
s1[4, 6] = 50

三.DataFrame

DataFrame是二维的表格型数据结构。可以将DataFrame理解为Series的容器。

1.创建

# 通过dict创建DataFrame
data = {'name':["google", "amazon", "apple", "youtube", "oracle"], 'age':[33, 44, 11, 66, 44], "money" : [400, 200, 100, 800, 500]}
df1 = pd.DataFrame(data, columns = ["name", "age", "money"])

2.时间序列类型index

# 月
dates = pd.date_range('2017-10-08', periods = 10, freq = "M")
# 天
dates = pd.date_range('2017-10-08', periods = 10, freq = "D")
# 时
dates = pd.date_range('2017-10-08', periods = 10, freq = "H")

3.选取

# 获取前3行数据
df1.head(3)
# 获取后3行数据
df1.tail(3)
# 获取列
df1.name, df1['name'], df1[["name", "money"]]
# 获取行
df1[0:3], df1.loc[0:3]
# 同时获取行列
df1.loc[0:3, ["name", "money"]]

4.增加、删除、修改

# 增加列
df1["new"] = 6
# 删除列,不修改原DataFrame
df1 = df1.drop("new", axis = 1)
# 增加行,修改原DataFrame
df1.loc[df1.index.max() + 1] = {"name": "microsoft", "age": 70, "money": 300}
# 增加行,不修改原DataFrame
df1 = df1.append([{"name": "facebook", "age": 701, "money": 900}], ignore_index = True)
# 删除行,不修改原DataFrame
df1 = df1.drop([2])
# 修改数据
df1.loc[5,"age"] = 888
df1.loc[8:10, ["age", "money"]] = [11, 222]

5.WHERE

# 过滤数据,使用DataFrame.dtypes查看数据类型
df1[df1["age"] > 30]
df1[(df1["age"] > 30) & (df1["money"] < 600)], df1[(df1.age > 40) & (df1.money < 600)]
df1[df1["name"].isin(["amazon", "youtube"])]

6.DISTINCT

# 去重
df1.age.drop_duplicates()
df1[["age", "money"]].drop_duplicates()

7.JOIN

# 联接
df3 = pd.merge(df1, df2, how="left", left_on = "name", right_on = "name")
df3 = pd.merge(df1, df2, how="right", left_on = "name", right_on = "name")

8.GROUP BY

# 分组
df1.groupby("age")["money"].sum()
df1.groupby(["age", "name"])["money"].count()

9.ORDER BY

# 排序
df1.sort_values("age", ascending=True)
df1.sort_values(["age", "money"], ascending=[True, False])

10.UNION

# 合并
df2 = df1.copy(True)
df3 = pd.concat([df1,df2], ignore_index = True)
df3 = df1.append(df2, ignore_index = True)

11.导入和保存

Excel格式需要安装openpyxl、xlrd包

# 保存为csv格式
df1.to_csv("data.csv", encoding="utf-8")
# 从csv文件读取
df1 = pd.read_csv("data.csv")
# 保存为excel格式
df1.to_excel("data.xlsx", sheet_name = "Sheet1", encoding="utf-8")
# 从excel文件读取
df1 = pd.read_excel("data.xlsx", sheet_name = "Sheet1")

Pandas常用函数入门的更多相关文章

  1. pandas常用函数之shift

    shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会 ...

  2. pandas常用函数之diff

    diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下: index value1 A 0 B 1 C 2 D 3 如果执行 ...

  3. pandas 常用函数整理

    pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame im ...

  4. 【转载】pandas常用函数

    原文链接:https://www.cnblogs.com/rexyan/p/7975707.html 一.import语句 import pandas as pd import numpy as np ...

  5. pandas常用函数

    1. df.head(n): 显示数据前n行,不指定n,df.head则会显示所有的行 2. df.columns.values获取所有列索引的名称 3. df.column_name: 直接获取列c ...

  6. 整理 pandas 常用函数

    1. df.head(n): 显示数据前n行,不指定n,df.head则会显示所有的行 2. df.columns.values获取所有列索引的名称 3. df.column_name: 直接获取列c ...

  7. 5.2 pandas 常用函数清单

    文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', 'C'...] 自定义列 ...

  8. python,pandas常用函数

    一.rename,更改df的列名和行索引 df=pd.DataFrame(np.arange(,).reshape(,)) print(df) print(type(df)) 结果为: <cla ...

  9. pandas 常用函数

随机推荐

  1. Select()使用否?

    David Treadwell ,Windows Socket 的一位开发者,曾经在他的一篇名为"Developing Transport-Independent Applications ...

  2. POJ(1195)(单点修改,区间查询)(二维)

    题目大意 给定一个N*N的网格,刚开始每个网格的值都是0,接下来会对这些网格进行操作,有一下两种操作: 1."X Y A"对网格C[x][y]增加A 2."L B R T ...

  3. bzoj3624(铺黑白路)(并查集维护)

    题意网上自己随便找,绝对是找的到的. 题解:(白边表示鹅卵石路,黑边表示水泥路)这道题的解法,先考虑将黑边所有都先连起来,组成一个又一个的联通块,然后用白边去连, 如果可以联通的话,就用白边去代替黑边 ...

  4. 管中窥豹——从OVS看SDN

    网络虚拟化是当前云计算最重要的特点之一,打通租户网络之间互通以及访问控制策略,最重要的是满足租户之间的网络隔离,这才是云计算网络的特点.而SDN的产生则是在网络虚拟化中,将控制面和业务面分离,控制面只 ...

  5. Struts2 02--通配符

       在以前没有使用Struts时,web与前台的数据交互通过Servlet+jsp页面.一个增删改查往往需要写四个Servlet来处理数据:在使用struts之后,Servlet不再被使用,而是通过 ...

  6. 【解决方案】客户端请求数据较大时,nginx返回数据被截断

    [问题描述]:客户端使用curl命令向nginx请求数据,当返回数据量较大时,数据被截断,客户端无法获取完整的数据. [问题原因]:nginx配置文件中包含了proxy_buffer_size.pro ...

  7. 用Python来实现列举某个文件夹内所有的文件列表

    用Python来实现列举某个文件夹内所有的文件列表.吾八哥我动手写代码之前分析了下,遍历一个文件夹,肯定是需要用到os模块了,查阅模块帮助信息,可知os.listdir()方法可以列举某个文件夹内的所 ...

  8. WPF DataGrid自动生成序号

    需求和效果 应用WPF技术进行开发的时候,大多都会遇到给DataGrid添加序号的问题,今天分享一下查阅了很多stackoverflow的文章后,总结和改进过来的方法,先看一下效果图,文末附Demo下 ...

  9. java虚拟机指令dup的理解

    举个例子: public class ExceptionTest{ void cantBeZero(int i) throws Exception{ throw new Exception(); } ...

  10. vue-cli中如何引入jquery

    前言 虽然vue不推荐直接操作DOM,而且也提供了操作DOM的方式.但是在某些时候还是要用到jquery(囧),那么如何在使用vue-cli的时候引入jquery呢? 安装 国内镜像 cnpm 安装 ...