A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).

The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.

For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .

The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.

For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].

Notes:

  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]

Credits:
Special thanks to @stellari for adding this problem, creating these two awesome images and all test cases.

https://leetcode.com/problems/the-skyline-problem/

分别将每个线段的左边节点与右边节点存到新的vector height中,根据x坐标值排序,然后遍历求拐点。求拐点的时候用一个最大化heap来保存当前的楼顶高度,遇到左边节点,就在heap中插入高度信息,遇到右边节点就从heap中删除高度。分别用pre与cur来表示之前的高度与当前的高度,当cur != pre的时候说明出现了拐点。在从heap中删除元素时要注意,我使用priority_queue来实现,priority_queue并不提供删除的操作,所以又用了别外一个unordered_map来标记要删除的元素。在从heap中pop的时候先看有没有被标记过,如果标记过,就一直pop直到空或都找到没被标记过的值。别外在排序的时候要注意,如果两个节点的x坐标相同,我们就要考虑节点的其它属性来排序以避免出现冗余的答案。且体的规则就是如果都是左节点,就按y坐标从大到小排,如果都是右节点,按y坐标从小到大排,一个左节点一个右节点,就让左节点在前。下面是AC的代码。

 class Solution {
private:
enum NODE_TYPE {LEFT, RIGHT};
struct node {
int x, y;
NODE_TYPE type;
node(int _x, int _y, NODE_TYPE _type) : x(_x), y(_y), type(_type) {}
}; public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
vector<node> height;
for (auto &b : buildings) {
height.push_back(node(b[], b[], LEFT));
height.push_back(node(b[], b[], RIGHT));
}
sort(height.begin(), height.end(), [](const node &a, const node &b) {
if (a.x != b.x) return a.x < b.x;
else if (a.type == LEFT && b.type == LEFT) return a.y > b.y;
else if (a.type == RIGHT && b.type == RIGHT) return a.y < b.y;
else return a.type == LEFT;
}); priority_queue<int> heap;
unordered_map<int, int> mp;
heap.push();
vector<pair<int, int>> res;
int pre = 0, cur = ;
for (auto &h : height) {
if (h.type == LEFT) {
heap.push(h.y);
} else {
++mp[h.y];
while (!heap.empty() && mp[heap.top()] > ) {
--mp[heap.top()];
heap.pop();
}
}
cur = heap.top();
if (cur != pre) {
res.push_back({h.x, cur});
pre = cur;
}
}
return res;
}
};

使用一些技巧可以大大减少编码的复杂度,priority_queue并没有提供erase操作,但是multiset提供了,而且multiset内的数据是按BST排好序的。在区分左右节点时,我之前自己建了一个结构体,用一个属性type来标记。这里可以用一个小技巧,那就是把左边节点的高度值设成负数,右边节点的高度值是正数,这样我们就不用额外的属性,直接用pair<int, int>就可以保存了。而且对其排序,发现pair默认的排序规则就已经满足要求了。

 class Solution {
public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
vector<pair<int, int>> height;
for (auto &b : buildings) {
height.push_back({b[], -b[]});
height.push_back({b[], b[]});
}
sort(height.begin(), height.end());
multiset<int> heap;
heap.insert();
vector<pair<int, int>> res;
int pre = , cur = ;
for (auto &h : height) {
if (h.second < ) {
heap.insert(-h.second);
} else {
heap.erase(heap.find(h.second));
}
cur = *heap.rbegin();
if (cur != pre) {
res.push_back({h.first, cur});
pre = cur;
}
}
return res;
}
};

LintCode上也有一道跟这道一样,不过只是输出的结果不同。

http://www.lintcode.com/en/problem/building-outline/

[LeetCode] The Skyline Problem的更多相关文章

  1. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  2. [LeetCode] 281. The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  3. [LeetCode] 218. The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  4. [LeetCode#218] The Skyline Problem

    Problem: A city's skyline is the outer contour of the silhouette formed by all the buildings in that ...

  5. Java for LeetCode 218 The Skyline Problem【HARD】

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  6. LeetCode 218. The Skyline Problem 天际线问题(C++/Java)

    题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...

  7. The Skyline Problem leetcode 详解

    class Solution { public: vector<pair<int, int>> getSkyline(vector<vector<int>&g ...

  8. 218. The Skyline Problem (LeetCode)

    天际线问题,参考自: 百草园 天际线为当前线段的最高高度,所以用最大堆处理,当遍历到线段右端点时需要删除该线段的高度,priority_queue不提供删除的操作,要用unordered_map来标记 ...

  9. The Skyline Problem

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

随机推荐

  1. zookeeper集群

    0,Zookeeper基本原理 ZooKeeper集群由一组Server节点组成,这一组Server节点中存在一个角色为Leader的节点,其他节点都为Follower.当客户端Client连接到Zo ...

  2. jQuery 购物车鼠标经过出现下拉框的做法

    这一段时间在学习web前端,最近学了jQuery库,深感其强大,下面通过写购物车的下拉框做法,把自己的理解和大家交流一下,欢迎各位大神指点指正,废话不多说,开始正题: 购物车html: <!-- ...

  3. Linux入侵检测常用命令

    find / -mtime 0 #0代表目前时间,表示从现在开始到24小时以前,有改动过内容的文件全都会被列出来.如果是3天前24小时内,则使用find / -mtime 3 find /etc -n ...

  4. 隐藏tabbar的属性hidesBottomBarWhenPushed

    项目中有需求是A视图控制器push之后B视图控制器需要隐藏底部的tabbar,在pop之后A视图控制器仍然显示tabbar. 其实不需要在push操作时敲 self.hidesBottomBarWhe ...

  5. iOS多线程之6.GCD的其他用法

    队列组   让队列里的任务同时执行,当任务都执行完毕时,再以通知的形式告诉程序员.举例,同时下载两张图片,两张图片都下载完了,在合成成一张. 代码: #import "ViewControl ...

  6. Mou常用快捷键

    title: Mou常用快捷键date: 2015-11-08 17:16:38categories: 编辑工具 tags: mou 小小程序猿我的博客:http://daycoding.com Vi ...

  7. 我的Android第五章:通过Intent实现活动与活动之间的交互

    Intent在活动的操作 作用: Itent是Android程序中各个组件直接交换的一个重要方式可以指定当前组件要执行任务同时也可以给各个组件直接进行数据交互              同时Inten ...

  8. JVM-内存管理

    都说搞C的牛叉,那是因为C解决问题,全靠程序员自己,他们对自己的程序在内存中是什么样了如指掌.而Java呢不需要有太多操作系统的知识,不用时刻注意内存的问题,但这不代表我们就不用去了解它背后的原理.J ...

  9. angularJS 如何读写缓冲

    写在前面 1.在客户端.服务端架构中,HTTP协议是主流通信技术: 2.HTTP协议的无状态特性,节省带宽,较少服务器的负载,缓冲技术具有重要的运用:这里主要讲解在客户端浏览器中angular如何读写 ...

  10. oracle一些基本语句

    --添加一个字段alter table 表名 add(列类型);--修改字段数据类型alter table 表名 modify(列类型);--删除一个字段alter table 表名 drop col ...