使用sklearn.model_selection.train_test_split可以在数据集上随机划分出一定比例的训练集和测试集

1.使用形式为:

 from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(train_data,train_target,test_size=0.2, random_state=0)

2.参数解释:

train_data:样本特征集

train_target:样本的标签集

test_size:样本占比,测试集占数据集的比重,如果是整数的话就是样本的数量

random_state:是随机数的种子。在同一份数据集上,相同的种子产生相同的结果,不同的种子产生不同的划分结果

X_train,y_train:构成了训练集

X_test,y_test:构成了测试集

3.举例:

生成一个包含100个样本的数据集,随机换分出20%为测试集

 #py36
#!/usr/bin/env python
# -*- coding: utf-8 -*- #from sklearn.cross_validation import train_test_split
from sklearn.model_selection import train_test_split # 生成100条数据:100个2维的特征向量,对应100个标签
X = [["feature ","one "]] * 50 + [["feature ","two "]] * 50
y = [1] * 50 + [2] * 50 # 随机抽取20%的测试集
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=1)
print ("train:",len(X_train), "test:",len(X_test)) # 查看被划分出的测试集
for i in range(len(X_test)):
print ("".join(X_test[i]), y_test[i]) '''
train: 80 test: 20
feature two 2
feature two 2
feature one 1
feature two 2
feature two 2
feature one 1
feature one 1
feature two 2
feature two 2
feature two 2
feature two 2
feature one 1
feature two 2
feature two 2
feature two 2
feature one 1
feature one 1
feature one 1
feature two 2
feature one 1
'''

使用Sklearn-train_test_split 划分数据集的更多相关文章

  1. sklearn——train_test_split 随机划分训练集和测试集

    sklearn——train_test_split 随机划分训练集和测试集 sklearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http: ...

  2. Pytorch划分数据集的方法

    之前用过sklearn提供的划分数据集的函数,觉得超级方便.但是在使用TensorFlow和Pytorch的时候一直找不到类似的功能,之前搜索的关键字都是"pytorch split dat ...

  3. 使用python划分数据集

    无论是训练机器学习或是深度学习,第一步当然是先划分数据集啦,今天小白整理了一些划分数据集的方法,希望大佬们多多指教啊,嘻嘻~ 首先看一下数据集的样子,flower_data文件夹下有四个文件夹,每个文 ...

  4. sklearn 划分数据集。

    1.sklearn.model_selection.train_test_split随机划分训练集和测试集 函数原型: X_train,X_test, y_train, y_test =cross_v ...

  5. sklearn中的数据集的划分

    sklearn数据集划分方法有如下方法: KFold,GroupKFold,StratifiedKFold,LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,L ...

  6. sklearn中,数据集划分函数 StratifiedShuffleSplit.split() 使用踩坑

    在SKLearn中,StratifiedShuffleSplit 类实现了对数据集进行洗牌.分割的功能.但在今晚的实际使用中,发现该类及其方法split()仅能够对二分类样本有效. 一个简单的例子如下 ...

  7. 机器学习笔记2 – sklearn之iris数据集

    前言 本篇我会使用scikit-learn这个开源机器学习库来对iris数据集进行分类练习. 我将分别使用两种不同的scikit-learn内置算法--Decision Tree(决策树)和kNN(邻 ...

  8. TF:利用sklearn自带数据集使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线—Jason niu

    import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation impo ...

  9. 解决Sklearn中使用数据集MNIST无法获取的问题(WinError 10060)

    今天在学习PCA的时候,使用mnist数据集遇到一个问题,代码是这样的: import numpy as np from sklearn.datasets import fetch_mldata mn ...

随机推荐

  1. 你在用 JWT 代替 Session?

    现在,JSON Web Tokens (JWT) 是非常流行的.尤其是 Web 开发领域. 流行 安全 稳定 易用 支持 JSON 所有这些因素,令 JWT 名声大振. 但是,今天我要来说说使用 JW ...

  2. HDU - 4725_The Shortest Path in Nya Graph

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...

  3. Oracle函数——COALESCE

    COALESCE 含义:COALESCE是一个函数, (expression_1, expression_2, ...,expression_n)依次参考各参数表达式,遇到非null值即停止并返回该值 ...

  4. Mysql——ERROR 1045 (28000): Access denied for user 'root'@'localhost'

    1.修改my.ini,最后一行添加  skip-grant-tables  ,保存关闭.(win10默认安装路径:C:\ProgramData\MySQL\MySQL Server 5.7) 2.重启 ...

  5. 选用适合的ORACLE优化器

    ORACLE的优化器共有3种: a.  RULE (基于规则)   b. COST (基于成本)  c. CHOOSE (选择性) 设置缺省的优化器,可以通过对init.ora文件中OPTIMIZER ...

  6. "不用谢" 的11种表达

    说Thank you ,机械版的反应you are welcome.虽然没错,但实在太老掉牙,在国外使用率不高: 随性,不足挂齿的小事 Not a problem 别放在心上 Any time 有事随 ...

  7. oralce 减少访问数据库的次数

    当执行每条SQL语句时, ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等等. 由此可见, 减少访问数据库的次数 , 就能实际上减少ORACLE的工作 ...

  8. 图表echarts折线图,柱状图,饼状图

    总体就是有折线图相关图标的设置,x,y轴的设置,x,y轴或者数据加上单位的设置.饼状图如何默认显示几个数据中的某个数据 折线图:legend(小标题)中间默认是圆圈 改变成直线 在legend设置的时 ...

  9. 字符串编辑距离(Edit Distance)

    一.问题描述定义字符串编辑距离(Edit Distance),是俄罗斯科学家 Vladimir Levenshtein 在 1965 年提出的概念,又称 Levenshtein 距离,是指两个字符串之 ...

  10. 【已解决】phpMyAdmin中导入mysql数据库文件时出错:您可能正在上传很大的文件,请参考文档来寻找解决办法

    期间,用phpMyAdmin去导入90M左右的mysql数据库文件时出错: 您可能正在上传很大的文件,请参考文档来寻找解决方法. [解决过程] 1.很明显,是文件太大,无法导入.即上传文件大小有限制. ...