Coursera machine learning 第二周 编程作业 Linear Regression
必做:
[*] warmUpExercise.m - Simple example function in Octave/MATLAB
[*] plotData.m - Function to display the dataset
[*] computeCost.m - Function to compute the cost of linear regression
[*] gradientDescent.m - Function to run gradient descent
1.warmUpExercise.m
A = eye();
2.plotData.m
plot(x, y, 'rx', 'MarkerSize', ); % Plot the data
ylabel('Profit in $10,000s'); % Set the y-axis label
xlabel('Population of City in 10,000s'); % Set the x-axis label
3.computeCost.m
function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = ; % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. H = X*theta-y;
J = (1/(2*m))*sum(H.*H); % ========================================================================= end
公式: 
注意matlab中 .* 的用法。
4.gradientDescent.m
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, ); for iter = :num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here. H = X*theta-y;
theta(1)=theta(1)-alpha*(1/m)*sum(H.*X(:,1));
theta(2)=theta(2)-alpha*(1/m)*sum(H.*X(:,2)); % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end
单变量梯度下降
对函数J(θ)求偏导

即 H.*X(:,1)
θi向着梯度最小的方向减少,alpha为步长。

theta(i)=theta(i)-alpha*(1/m)*sum(H.*X(:,i));
Coursera machine learning 第二周 编程作业 Linear Regression的更多相关文章
- Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables
https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...
- Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial
https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial Octave Tutorial 5 ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业(线性回归)
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...
- 【Machine Learning】单参数线性回归 Linear Regression with one variable
最近开始看斯坦福的公开课<Machine Learning>,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧. [设想] ...
- Andrew Ng机器学习编程作业: Linear Regression
编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matla ...
- [Machine Learning (Andrew NG courses)]II. Linear Regression with One Variable
- [Machine Learning (Andrew NG courses)]IV.Linear Regression with Multiple Variables
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...
- Coursera公开课-Machine_learing:编程作业
第二周编程作业:Linear Regression 分为单一变量和多变量,假想函数为:hθ(x)=θ0+θ1x1+θ2x2+θ3x3+⋯+θnxn.明显已经包含单一变量的情况,所以完成多变量可以一并解 ...
随机推荐
- MySQL 5.7.17 Group Replication 初始
http://blog.csdn.net/mchdba/article/details/53957248
- UVa116 (单向TSP,多决策问题)
/*----UVa1347 单向TSP 用d(i,j)表示从格子(i,j)出发到最后一列的最小开销 则在(i,j)处有三种决策,d(i,j)转移到d(i-1,j+1),d(i,j+1),d(i+1,j ...
- django网站安全学习记录
现在比较流行的网站攻击方式有sql注入,xss跨站脚本攻击,csrf跨站请求伪造,一句话木马等等 django非常强大,对这些攻击都做了防范 sql注入,通过在sql语句中插入非法的sql语句来实现爆 ...
- CentOS6.5安装ganglia3.6
参考来源: 1.http://yhz.me/blog/Install-Ganglia-On-CentOS.html 2.http://blog.csdn.net/sdlyjzh/article/det ...
- 2017.6.30 IDEA插件--gsonfomat的安装与使用
参考来自:http://www.cnblogs.com/1024zy/p/6370305.html 1.安装 2.使用 (1)新建一个空类 (2)在空类里按快捷键:alt+s,打开gsonformat ...
- XP中如何配置和共享打印机
Win XP中如何配置和共享打印机 一.配置 打印机 在"控制面板"打开"打印机和传真",在左边的选项或单击右键选择" ...
- 尖峰冲击测试(spike Testing)
与可靠性测试类似,尖峰冲击测试这种方法也是从其他行业借鉴而来.在电力工业,有一种冲击测试,用来验证设备在刚刚接通电源时能否经受住涌流的破坏.所谓涌流,通俗地说,就是电源接通瞬间,电流突然变大的现象.涌 ...
- JavaWeb Cookie详解
代码地址如下:http://www.demodashi.com/demo/12713.html Cookie的由来 首先我们需要介绍一下,在Web开发过程中为什么会引入Cookie.我们知道Http协 ...
- svn hooks使用
最近要将某个目录做samba共享出去,而想通过svn同步文档到svn,然后通过svn hooks 同步到共享目录,实现自动化 现在svn服务器和samba server再同一台机器上: 在svn路径下 ...
- rplidar 扫描角度设置
参考网站:: https://blog.csdn.net/sunyoop/article/details/78302090 https://blog.csdn.net/dzhongjie/arti ...