Coursera machine learning 第二周 编程作业 Linear Regression
必做:
[*] warmUpExercise.m - Simple example function in Octave/MATLAB
[*] plotData.m - Function to display the dataset
[*] computeCost.m - Function to compute the cost of linear regression
[*] gradientDescent.m - Function to run gradient descent
1.warmUpExercise.m
A = eye();
2.plotData.m
plot(x, y, 'rx', 'MarkerSize', ); % Plot the data
ylabel('Profit in $10,000s'); % Set the y-axis label
xlabel('Population of City in 10,000s'); % Set the x-axis label
3.computeCost.m
function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = ; % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. H = X*theta-y;
J = (1/(2*m))*sum(H.*H); % ========================================================================= end
公式: 
注意matlab中 .* 的用法。
4.gradientDescent.m
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, ); for iter = :num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here. H = X*theta-y;
theta(1)=theta(1)-alpha*(1/m)*sum(H.*X(:,1));
theta(2)=theta(2)-alpha*(1/m)*sum(H.*X(:,2)); % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end
单变量梯度下降
对函数J(θ)求偏导

即 H.*X(:,1)
θi向着梯度最小的方向减少,alpha为步长。

theta(i)=theta(i)-alpha*(1/m)*sum(H.*X(:,i));
Coursera machine learning 第二周 编程作业 Linear Regression的更多相关文章
- Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables
https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...
- Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial
https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial Octave Tutorial 5 ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业(线性回归)
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...
- 【Machine Learning】单参数线性回归 Linear Regression with one variable
最近开始看斯坦福的公开课<Machine Learning>,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧. [设想] ...
- Andrew Ng机器学习编程作业: Linear Regression
编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matla ...
- [Machine Learning (Andrew NG courses)]II. Linear Regression with One Variable
- [Machine Learning (Andrew NG courses)]IV.Linear Regression with Multiple Variables
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...
- Coursera公开课-Machine_learing:编程作业
第二周编程作业:Linear Regression 分为单一变量和多变量,假想函数为:hθ(x)=θ0+θ1x1+θ2x2+θ3x3+⋯+θnxn.明显已经包含单一变量的情况,所以完成多变量可以一并解 ...
随机推荐
- Hibernate中cascade和inverse的作用
Inverse和cascade是Hibernate映射中最难掌握的两个属性.两者都在对象的关联操作中发挥作用.1.明确inverse和cascade的作用inverse 决定是否把对对象中集合的改动反 ...
- unity shadow
这东西好难找LIGHT_ATTENUATION(a) shadow 的结果就在这个衰减里,这谁能猜的着,我一点点测出来的,reference也很难找 感谢这位http://blog.csdn.net/ ...
- ElasticSearch 排序
1.相关性排序 ElasticSearch为了按照相关性来排序,需要将相关性表示为一个数值,在 Elasticsearch 中, 相关性得分 由一个浮点数进行表示,并在搜索结果中通过 _score 参 ...
- ECSHOP删除云服务
一.删除[云服务中心]删除/admin/cloud.php删除/admin/templates/menu.htm中以下代码 Ajax.call('cloud.php?is_ajax=1>act= ...
- 向git库提交代码出现”There are no staged files"怎么办?
1.选择菜单“Window”->"Preference" 2.左边树菜单选择“Team”->"Git"->"Committing&q ...
- bzoj2115【WC2001】Xor
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2059 Solved: 856 [Submit][Statu ...
- sone1动态树
这尼吗桑心病狂的动态树:http://www.lydsy.com/JudgeOnline/problem.php?id=3153 终于让哥以一种碉堡的姿势过了: 牛B轰轰的最后两个都是我的...无法超 ...
- Mac环境下反编译apk
0,工具汇总 我们反编译apk主要使用下面三个工具 apktool:用于获取资源文件 dex2jar:获取源文件jar包 JD-GUI:反编译源文件jar包查看源码 找这些工具时折腾了我点时间.如今把 ...
- [转]Tomcat工作原理详解
一.Tomcat背景 自从JSP发布之后,推出了各式各样的JSP引擎.Apache Group在完成GNUJSP1.0的开发以后,开始考虑在SUN的JSWDK基础上开发一个可以直接提供Web服务的JS ...
- js中的string.format函数代码
String.prototype.format = function(args) { if (arguments.length > 0) { var result = this; if (arg ...