BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)
题意
Sol
很显然的一个dp方程
\(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\)
其中\(sum_i = \sum_{j = 1}^i len_j + 1\)
这个东西显然是有决策单调性的。
单调队列优化一下
我好像已经做过三个这种类型的题了,而且转移的时候\(w\)中总是带个幂函数。。interesting
#include<bits/stdc++.h>
#define chmax(a, b) (a = (a > b ? a : b))
#define chmin(a, b) (a = (a < b ? a : b))
#define LL long long
#define LDB long double
//#define int long long
using namespace std;
const int MAXN = 1e5 + 10;
inline int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int T, N, L, P, sum[MAXN], q[MAXN], c[MAXN], pre[MAXN];//c???ߵ?λ?
char str[MAXN][35];
LDB f[MAXN];
LDB fastpow(LDB a, int p) {
LDB base = 1;
while(p) {
if(p & 1) base = base * a;
a = a * a; p >>= 1;
}
return base;
}
LDB calc(int j, int i) {
return f[j] + fastpow(abs(sum[i] - sum[j] - L), P);
}
int lower(int x, int y) {//???x????????
int l = x, r = N + 1, ans = 0;
while(l <= r) {
int mid = l + r >> 1;
if(calc(x, mid) >= calc(y, mid)) r = mid - 1;
else l = mid + 1;
}
return l;
}
void solve() {
N = read(); L = read() + 1; P = read();
for(int i = 1; i <= N; i++) {
scanf("%s", str[i] + 1);
sum[i] = sum[i - 1] + strlen(str[i] + 1) + 1;
}
memset(q, 0, sizeof(q));
for(int i = 1, h = 2, t = 2; i <= N; i++) {
while(h < t && c[h] <= i) h++;
f[i] = calc(q[h], i); pre[i] = q[h];
while(h < t && c[t - 1] >= lower(q[t], i)) t--;
c[t] = lower(q[t], i); q[++t] = i;
}
if(f[N] > 1e18) {puts("Too hard to arrange\n--------------------"); return;}
printf("%.0Lf\n", f[N]);
puts("--------------------");
}
main() {
for(T = read(); T; T--) solve();
}
BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)的更多相关文章
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- [NOI2009]诗人小G 决策单调性优化DP
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- BZOJ_1563_[NOI2009]诗人小G_决策单调性
BZOJ_1563_[NOI2009]诗人小G_决策单调性 Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超 ...
- [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)
[BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...
- BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)
设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
随机推荐
- 【BZOJ 3326】[Scoi2013]数数
题目描述 Fish 是一条生活在海里的鱼,有一天他很无聊,就开始数数玩.他数数玩的具体规则是: 确定数数的进制B 确定一个数数的区间[L, R] 对于[L, R] 间的每一个数,把该数视为一个字符串, ...
- kuangbin专题十六 KMP&&扩展KMP HDU3746 Cyclic Nacklace
CC always becomes very depressed at the end of this month, he has checked his credit card yesterday, ...
- C语言中的头文件
1.头文件#include <> :表示引用标准库头文件,编译器会从系统配置的库环境中去寻找 2.头文件#include "":一般表示用户自己定义使用的头文件,编译器 ...
- 【笔记】MySQL的基础学习
[笔记]MySQL的基础学习 老男孩 MySQL 一 安装与配置 1 下载安装 官网:http://dev.mysql.com/downloads/mysql/ 下载相应版本的压缩包 解压压缩包至任 ...
- linux 安装 配置网络 备份 快照
安装系统准备: 1.软件准备 vmware workstation14.vm14key.centos系统镜像 secureCRT http://sw.bos.baidu.com/sw-search-s ...
- P5022 旅行 (NOIP2018)
传送门 先考虑是一颗树的情况 求最小的 dfs 序 显然按儿子编号从小到大dfs 如果有多一条边怎么办 显然会有一条边不用走 直接枚举删那条边然后每次都暴力 dfs 复杂度 $O(n^2)$ 注意每个 ...
- python爬取抖音APP视频教程
本文讲述爬取抖音APP视频数据(本文未完,后面还有很多地方优化总结) 公众号回复:抖音 即可获取源码 1.APP抓包教程,需要用到fiddler fiddler配置和使用查看>>王者荣耀盒 ...
- 小程序自定义modal弹窗封装实现
前言小程序官方提供了 wx.showModal 方法,但样式比较固定,不能满足多元化需求,自定义势在必行~ 老规矩先上图 点击某个按钮,弹出 modal框,里面的内容可以自定义,可以是简单的文字提示, ...
- python3 continue和break 区别
for i in range(10): if i==5: continue #跳出当次循环 if i==8: break #跳出整个for循环 print(i)
- 一行CMD命令kill(杀)掉你的进程
查看进程 pi@raspberry:~ $ ps -ef | grep python3 UID PID PPID C STIME TTY TIME CMD pi 4678 4666 0 11:57 p ...