BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)
题意
Sol
很显然的一个dp方程
\(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\)
其中\(sum_i = \sum_{j = 1}^i len_j + 1\)
这个东西显然是有决策单调性的。
单调队列优化一下
我好像已经做过三个这种类型的题了,而且转移的时候\(w\)中总是带个幂函数。。interesting
#include<bits/stdc++.h>
#define chmax(a, b) (a = (a > b ? a : b))
#define chmin(a, b) (a = (a < b ? a : b))
#define LL long long
#define LDB long double
//#define int long long
using namespace std;
const int MAXN = 1e5 + 10;
inline int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int T, N, L, P, sum[MAXN], q[MAXN], c[MAXN], pre[MAXN];//c???ߵ?λ?
char str[MAXN][35];
LDB f[MAXN];
LDB fastpow(LDB a, int p) {
LDB base = 1;
while(p) {
if(p & 1) base = base * a;
a = a * a; p >>= 1;
}
return base;
}
LDB calc(int j, int i) {
return f[j] + fastpow(abs(sum[i] - sum[j] - L), P);
}
int lower(int x, int y) {//???x????????
int l = x, r = N + 1, ans = 0;
while(l <= r) {
int mid = l + r >> 1;
if(calc(x, mid) >= calc(y, mid)) r = mid - 1;
else l = mid + 1;
}
return l;
}
void solve() {
N = read(); L = read() + 1; P = read();
for(int i = 1; i <= N; i++) {
scanf("%s", str[i] + 1);
sum[i] = sum[i - 1] + strlen(str[i] + 1) + 1;
}
memset(q, 0, sizeof(q));
for(int i = 1, h = 2, t = 2; i <= N; i++) {
while(h < t && c[h] <= i) h++;
f[i] = calc(q[h], i); pre[i] = q[h];
while(h < t && c[t - 1] >= lower(q[t], i)) t--;
c[t] = lower(q[t], i); q[++t] = i;
}
if(f[N] > 1e18) {puts("Too hard to arrange\n--------------------"); return;}
printf("%.0Lf\n", f[N]);
puts("--------------------");
}
main() {
for(T = read(); T; T--) solve();
}
BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)的更多相关文章
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- [NOI2009]诗人小G 决策单调性优化DP
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- BZOJ_1563_[NOI2009]诗人小G_决策单调性
BZOJ_1563_[NOI2009]诗人小G_决策单调性 Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超 ...
- [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)
[BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...
- BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)
设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
随机推荐
- 51nod1455(dp)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1455 题意: 中文题诶~ 思路: dp 1 <= n, ...
- Angular2入门-架构总览
▓▓▓▓▓▓ 大致介绍 在3月23日,Angular4正式发布(没有3).似乎现在学Angular2又晚了,又晚一步-_-||.Angular2在Angular1的基础上有了较大的改变.之前向一个同学 ...
- SpringBoot浏览器直接访问html
在resources文件夹或与其并列的文件夹下建立public文件夹,在public文件夹下的html文件可以通过浏览器中输入文件+后缀名的方式直接访问的. 一.public文件夹,就相当于在ecl ...
- php 生成读取csv文件并解决中文乱码
csv其实是文本文件,但是里面的内容是利用逗号分隔的. 1. 生成csv文件 function new_csv($arr) { $string=""; foreach ($arr ...
- 数据结构4:顺序表(线性表的顺序存储结构)及C语言实现
逻辑结构上呈线性分布的数据元素在实际的物理存储结构中也同样相互之间紧挨着,这种存储结构称为线性表的顺序存储结构. 也就是说,逻辑上具有线性关系的数据按照前后的次序全部存储在一整块连续的内存空间中,之间 ...
- getTasksWithCompletionHandler的用法
最近在学习iOS的NSSession的后台下载,使用getTasksWithCompletionHandler获取下载任务时候,发现一些问题,希望分享一下: 第一次写博客有点乱,大家不要见怪-- NS ...
- 2018-2019-2 20165320 《网络对抗技术》 Exp6 信息搜集与漏洞扫描
2018-2019-2 20165320 <网络对抗技术> Exp6 信息搜集与漏洞扫描 一.实践目标 掌握信息搜集的最基础技能与常用工具的使用方法. 二.实践内容 1.各种搜索技巧应用 ...
- Set去掉重复的元素
String[] uids= request.getParameterValues("dxus");获取页面传过来的id //--------------------------- ...
- JavaScript Succinctly 读后笔记
1.JavaScript does not have block scope 2.Scope is determined during function definintion, not invo ...
- 图像数据转换成db(leveldb/lmdb)文件(转)
参考网站:http://www.cnblogs.com/denny402/p/5082341.html 在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格 ...