题目链接:LCM Walk

Time Limit: 2000/1000 MS (Java/Others)    

Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 491    Accepted Submission(s): 254

Problem Description
A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered 1,2,⋯ from the bottom, so are the columns. At first the frog is sitting at grid (sx,sy), and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid (x,y), first of all, he will find the minimum z that can be divided by both x and y, and jump exactly z steps to the up, or to the right. So the next possible grid will be (x+z,y), or (x,y+z).

After a finite number of steps (perhaps zero), he finally finishes at grid (ex,ey). However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell the frog the number of possible starting grids that can reach (ex,ey)!

 
Input
First line contains an integer T, which indicates the number of test cases.

Every test case contains two integers ex and ey, which is the destination grid.

⋅ 1≤T≤1000.
⋅ 1≤ex,ey≤109.

 
Output
For every test case, you should output "Case #x: y", where x indicates the case number and counts from 1 and y is the number of possible starting grids.
 
Sample Input
3
6 10
6 8
2 8
 
Sample Output
Case #1: 1
Case #2: 2
Case #3: 3
题意:(x,y)的下一步为(x+z,y)或(x,y+z),z为x和y的最小公倍数,问有多少个地方最终可以到达给的目的地(ex,ey)包括自身;
思路:lcm(x,y)=x*y/gcd(x,y)    gcd(ex,ey)=gcd(x+x*y/gcd(x,y),y)(y比x小的时候,不然x,y换一下也行)
   由于gcd(a,n)=gcd(a+k*n,n)所以gcd(x,y)=gcd(ex,ey);所以就可以求出x了,然后循环这些步骤就可以计算一共有多少个位置满足题意了,记得算出一个x要代回去验证是否成立;
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
ll gcd(ll a,ll b)
{
if(b==)return a;
return gcd(b,a%b);
}
int main()
{
int t,cnt=;
ll x,y;
scanf("%d",&t);
while(t--)
{
ll ans=;
cin>>x>>y;
while()
{
if(x<y)
{
ll fx=x;
x=y;
y=fx;
}
ll fy=y/gcd(x,y);
if(x%(fy+)!=)break;
else
{
ll ax=x/(fy+);
if(ax+ax*y/gcd(ax,y)!=x)break;
else ans++,x=ax;
}
}
cout<<"Case #"<<cnt<<": "<<ans<<"\n";
cnt++;
} return ;
}

hdu-5584 LCM Walk(数论)的更多相关文章

  1. HDU 5584 LCM Walk 数学

    LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...

  2. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  3. HDU 5584 LCM Walk(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意:(x, y)经过一次操作可以变成(x+z, y)或(x, y+z)现在给你个点(ex, e ...

  4. HDU 5584 LCM Walk【搜索】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意: 分析: 这题比赛的时候卡了很久,一直在用数论的方法解决. 其实从终点往前推就可以发现, ...

  5. hdu 5584 LCM Walk(数学推导公式,规律)

    Problem Description A frog has just learned some number theory, and can't wait to show his ability t ...

  6. hdu 5584 LCM Walk

    没用运用好式子...想想其实很简单,首先应该分析,由于每次加一个LCM是大于等于其中任何一个数的,那么我LCM加在哪个数上面,那个数就是会变成大的,这样想,我们就知道,每个(x,y)对应就一种情况. ...

  7. HDU5584 LCM Walk 数论

    LCM Walk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  8. HDU 5844 LCM Walk(数学逆推)

    http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意: 现在有坐标(x,y),设它们的最小公倍数为k,接下来可以移动到(x+k,y)或者(x,y+k).现 ...

  9. L - LCM Walk HDU - 5584 (数论)

    题目链接: L - LCM Walk HDU - 5584 题目大意:首先是T组测试样例,然后给你x和y,这个指的是终点.然后问你有多少个起点能走到这个x和y.每一次走的规则是(m1,m2)到(m1+ ...

随机推荐

  1. Gradle 构建工具

    参考文章: 作者:ghui 链接:https://www.zhihu.com/question/30432152/answer/48239946 来源:知乎 著作权归作者所有.商业转载请联系作者获得授 ...

  2. .Net中多线程类的使用和总结

    lock, Monitor, Thread, Join, BackGroundWorker.   消费者和生产者.Async 委托Invoke TypeHandle中BlockIndex. http: ...

  3. pdf文件编辑

    下载软件:Foxit PDF Editor,这个工具挺好用的,可以对pdf文件内容进行编辑 Foxit PDF Editor 是第一个真正的PDF文件编辑软件.许多人都希望能找到一个象编辑其它类型的文 ...

  4. 【BZOJ】2186 沙拉公主的困惑

    一道很有价值的题. [解析1]欧几里德算法求乘法逆元,前缀和 [Analysis]O(T n log n). [Sum] ①int运算.假设会超出界,第一个数前要加上(LL)即类型转换. ②gcd不变 ...

  5. City Game(最大子矩阵)

    Bob is a strategy game programming specialist. In his new city building game the gaming environment ...

  6. CentOS7.1安装 Vsftpd FTP 服务器

    # yum install vsftpd 安装 Vsftpd FTP 编辑配置文件 ‘/etc/vsftpd/vsftpd.conf’ 用于保护 vsftpd. # vi /etc/vsftpd/vs ...

  7. iOS与JS开发交互总结

    hybrid.jpg 前言 Web 页面中的 JS 与 iOS Native 如何交互是每个 iOS 猿必须掌握的技能.而说到 Native 与 JS 交互,就不得不提一嘴 Hybrid. Hybri ...

  8. Linux软件包分类

    源代码包 优点: 1.给你的就是源代码 2.可以修改源代码 3.可以自由选择所需的功能 4.软件是在自己电脑上编译安装,所以更加稳定高效 5.卸载方便(直接删了你安装软件的那个目录就好了) 缺点: 1 ...

  9. Android Studio support 26.0.0-alpha1 Failed to resolve: com.android.support:appcompat-v7:27.+ 报错解决方法

    AS下如何生成自定义的.jks签名文件, 以及如何生成数字签名 链接:http://www.cnblogs.com/smyhvae/p/4456420.html 链接:http://blog.csdn ...

  10. ICCV 2015 B-CNN细粒度分类

    哈哈,好久没写博客了....最近懒癌发作~~主要是因为心情不太好啊,做什么事情都不太顺心,不过已经过去啦.最近一直忙着公司的项目,想用这个网络,就给大家带来了的这篇文章.可能比较老,来自ICCV 20 ...