HDU - 6761 Minimum Index (字符串,Lyndon分解)
Minimum Index
题意
求字符串所有前缀的所有后缀表示中字典序最小的位置集合,最终转换为1112进制表示。比如aab,有三个前缀分别为a,aa,aab。其中a的后缀只有一个a,位置下标1;aa有两个后缀,字典序最小的是a,下标为2;aab有三个后缀,字典序最小的是aab,下标是1。答案为 \(1*(1112)^2+2*(1112)^1+1*(1112)^0\)
字符串长度1e6
分析
在求字符串的最小表示法中,有一个叫做Lyndon分解的求法,Lyndon分解可以使用Duval算法。详情可以参考 oi-wiki。
设\(d[j]\) 为前缀 j 的字典序最小后缀的起始位置,i, j, k 指针与oi-wiki中介绍的一致。对于下面三种情况讨论d[j]的求解
\(j - k\) 为 近似Lyndon串前缀的循环节长度。
- \(s[j] == s[k]\), 那么d[j] = d[k] + (j - k); 本质上是取了 j 所在循环节的开头位置。(\(s=www\overline{w}\) 中 \(\overline{w}\) 的开头)
- \(s[j] > s[k]\),那么 d[j] = i; 当前\(s[i..j]\) 是一个Lyndon串,所以d[j] = i;
- \(s[j] < s[k]\),Duval算法中会重新处理 j 所在的这一段(\(s=www\overline{w}\) 中 \(\overline{w}\)), i会被置为这一段的开头,继续后面的分解过程。这里有一个特殊情况需要考虑,如果 \(j == k + 1\),那么 j 就是下一次分解的开头, i 会被置为 j,所以要手动将d[j] = j。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 1e6 + 5;
const int mod = 1e9 + 7;
char s[N];
ll d[N], n;
int main(){
int T;scanf("%d", &T);
while(T--){
scanf("%s", s + 1);
n = strlen(s + 1);
int i = 1; d[1] = 1;
while(i <= n) {
int j = i + 1, k = i;
while(j <= n && s[k] <= s[j]) {
if(s[k] == s[j]){
d[j] = d[k] + (j - k);
k ++;
}
else {
d[j] = i;
k = i;
}
j ++;
}
d[j] = j; // 当 k == j - 1 时,必须有这一条。因为下面的循环结束后,i = k + 1 也就是 j,接下来的大循环不会在处理当前的 j, 这次 j 是被当做lyndon分解串的一个起点对待的。
while(i <= k) i += j - k;
}
ll res = 0;
for(int i = n;i>=1; i --){
res = res * 1112 + d[i];
res %= mod;
}
printf("%lld\n", res);
}
return 0;
}
HDU - 6761 Minimum Index (字符串,Lyndon分解)的更多相关文章
- LOJ129 Lyndon 分解
Lyndon 分解 样例 样例输入 1 ababa 样例输出 1 2 4 5 样例输入 2 bbababaabaaabaaaab 样例输出 2 1 2 4 6 9 13 18 样例输入 3 azAZ0 ...
- 【Leetcode_easy】599. Minimum Index Sum of Two Lists
problem 599. Minimum Index Sum of Two Lists 题意:给出两个字符串数组,找到坐标位置之和最小的相同的字符串. 计算两个的坐标之和,如果与最小坐标和sum相同, ...
- 知识点简单总结——Lyndon分解
知识点简单总结--Lyndon分解 Lyndon串 定义:一个字符串的最小后缀就是整个串本身. 等效理解:这个串为其所有循环表示中最小的. Lyndon分解 定义:将字符串分割为 $ s_{1} s_ ...
- hdu 4777 树状数组+合数分解
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)
HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...
- Hdu 5452 Minimum Cut (2015 ACM/ICPC Asia Regional Shenyang Online) dfs + LCA
题目链接: Hdu 5452 Minimum Cut 题目描述: 有一棵生成树,有n个点,给出m-n+1条边,截断一条生成树上的边后,再截断至少多少条边才能使图不连通, 问截断总边数? 解题思路: 因 ...
- HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)
HDU 1394 Minimum Inversion Number(线段树求最小逆序数对) ACM 题目地址:HDU 1394 Minimum Inversion Number 题意: 给一个序列由 ...
- HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number ...
- HDU 1394 Minimum Inversion Number(线段树/树状数组求逆序数)
Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
随机推荐
- Jetbrains系列产品重置试用方法
0x0. 项目背景 Jetbrains家的产品有一个很良心的地方,他会允许你试用30天(这个数字写死在代码里了)以评估是否你真的需要为它而付费.但很多时候会出现一种情况:IDE并不能按照我们实际的试用 ...
- 浅谈sql索引
索引是什么 假如你手上有一个你公司的客户表,老板说找什么客户你就得帮他找出来. 客户不多的时候,你拿着手指一行一行滑,费不了多少时间就能找到. 后来公司做大了,客户越来越多,好几页的客户,你发现,一行 ...
- Openstack Ocata 公共服务端(三)
Openstack Ocata 公共服务端 mysql 安装: yum install mariadb mariadb-server mysql 安装过程省略 rabbit-server 安装包: # ...
- 用percona monitoring plugins 监控mysql
下载:http://www.percona.com/redir/downloads/percona-monitoring-plugins/1.1.1/percona-zabbix-templates- ...
- SpringBoot WebSocket技术
最近看了Spring in Action,了解了一下WebSocket和Stomp协议相关技术,并搭建了一个项目.网上的例子不完整或者描述不清,所以自己记录一下以作备忘. 一.配置 Spring Bo ...
- ftp设置二进制上传
一个不重要的数据库,备份是用expdp导出,然后上传到ftp服务器上面.上周这个主机宕机了,要在别的数据库恢复,发现报如下错误: ORA-39001: invalid argument value O ...
- postgresql中权限介绍
postgresql权限分为实例的权限,数据库的权限,模式的权限,对象的权限,表空间的权限 实例的权限:由pg_hba.conf文件控制,控制那些用户那些IP以哪种方式连接数据库 数据库的权限:是否允 ...
- Hadoop2.7.7阿里云安装部署
阿里云的网络环境不需要我们配置,如果是在自己电脑上的虚拟机,虚拟机的安装步骤可以百度.这里是单机版的安装(也有集群模式的介绍)使用Xshell连接阿里云主机,用命令将自己下载好的安装包上传到服务器 # ...
- 镍氢可充电电池2.4V转3.3V,2V转3.3V稳压供电输出电路图
PW5100可以实现2.4V转3.3V,2V转3.3V的稳压电源电路,输出电流500MA.静态电流10uA,SOT23-5封装.输出纹波低,轻载性能高(轻载电感推荐6.8UH-10UH). PW510 ...
- mysql+MHA高可用
MHA(Master High Availability)目前在MySQL高可用方面是一个相对成熟的解决方案,它由日本DeNA公司youshimaton(现就职于Facebook公司)开发,是一套优秀 ...