1150 Travelling Salesman Problem
The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)
In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:
n C1 C2 ... Cn
where n is the number of cities in the list, and Ci's are the cities on a path.
Output Specification:
For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:
TS simple cycleif it is a simple cycle that visits every city;TS cycleif it is a cycle that visits every city, but not a simple cycle;Not a TS cycleif it is NOT a cycle that visits every city.
Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.
Sample Input:
6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6
Sample Output:
Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8
#include<stdio.h>
#include<algorithm> using namespace std; int inf=9999999;
int G[500][500]; int main()
{
fill(G[0],G[0]+500*500,inf);
int vnum;
int edgenum;
scanf("%d %d",&vnum,&edgenum);
for(int i=0;i<edgenum;i++)
{
int id1,id2;
scanf("%d %d",&id1,&id2);
scanf("%d",&G[id1][id2]);
G[id2][id1]=G[id1][id2];
}
int checknum;
scanf("%d",&checknum);
int min=2*inf;
int minid=-1;
for(int i=0;i<checknum;i++)
{
int potnum;
scanf("%d",&potnum);
int seq[potnum];
int dis=0;
bool mark[1000];
fill(mark,mark+1000,0);
for(int j=0;j<potnum;j++)
{
scanf("%d",&seq[j]);
mark[seq[j]]=true;
if(j!=0) dis+=G[seq[j-1]][seq[j]];
}
if(dis>=inf) printf("Path %d: NA (Not a TS cycle)\n",i+1);
else if(seq[0]!=seq[potnum-1]||potnum<vnum+1) printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
else if(potnum>vnum+1)
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
}
else if(seq[0]==seq[potnum-1])
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS simple cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else
{
printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
} } }
printf("Shortest Dist(%d) = %d",minid,min); }
1150 Travelling Salesman Problem的更多相关文章
- PAT 甲级 1150 Travelling Salesman Problem
https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...
- 1150 Travelling Salesman Problem(25 分)
The "travelling salesman problem" asks the following question: "Given a list of citie ...
- PAT A1150 Travelling Salesman Problem (25 分)——图的遍历
The "travelling salesman problem" asks the following question: "Given a list of citie ...
- 构造 - HDU 5402 Travelling Salesman Problem
Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...
- HDU 5402 Travelling Salesman Problem (构造)(好题)
大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...
- HDOJ 5402 Travelling Salesman Problem 模拟
行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...
- PAT_A1150#Travelling Salesman Problem
Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...
- HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)
Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (J ...
- PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断
Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...
随机推荐
- 二进制格式 PLY 模型文件的读取与渲染
PLY 文件头部信息: ply format binary_little_endian 1.0 comment VCGLIB generated element vertex 13469 proper ...
- MyISAM与InnoDB两者之间区别与选择(转)
Mysql在V5.1之前默认存储引擎是MyISAM:在此之后默认存储引擎是InnoDB MyISAM:默认表类型,它是基于传统的ISAM类型,ISAM是Indexed Sequential Acces ...
- mysql .sock丢时候如何链接数据库
在mysql服务器本机上链接mysql数据库时,经常会噢出现mysql.sock不存在,导致无法链接的问题,这是因为如果指定localhost作为一个主机名,则mysqladmin默认使用unix套接 ...
- kubernets之存活探针
一 存活探针存在的意义 1.1 kubernet通过存活探针(liveness probe)检查容器是否还在运行,可以为pod中的每个容器单独指定存活探针,如果探针执行失败,kubernets会 ...
- Spring Bean详解
Spring Bean 在Spring的应用中,Spring IoC容器可以创建.装配和配置应用组件对象,这里的组件对象称为Bean. Bean的配置 Spring可以看作一个大型工厂,用于生产和管理 ...
- 【高并发】ReadWriteLock怎么和缓存扯上关系了?!
写在前面 在实际工作中,有一种非常普遍的并发场景:那就是读多写少的场景.在这种场景下,为了优化程序的性能,我们经常使用缓存来提高应用的访问性能.因为缓存非常适合使用在读多写少的场景中.而在并发场景中, ...
- Hadoop2.7.7阿里云安装部署
阿里云的网络环境不需要我们配置,如果是在自己电脑上的虚拟机,虚拟机的安装步骤可以百度.这里是单机版的安装(也有集群模式的介绍)使用Xshell连接阿里云主机,用命令将自己下载好的安装包上传到服务器 # ...
- 技术基础 | Apache Cassandra 4.0基准测试
Apache Cassandra 4.0已经发布了Beta版,这是第一个支持JDK 11及更高JDK版本的Cassandra版本. 时延对于Apache Cassandra用户来说是个显而易见的关 ...
- Flask的“中间件”
特殊装饰器 from flask import Flask,render_template,request app = Flask(__name__) @app.before_request def ...
- 全栈性能测试修炼宝典-JMeter实战笔记(三)
JMeter体系结构 简介 JMeter是一款开源桌面应用软件,可用来模拟用户负载来完成性能测试工作. JMeter体系结构 X1~X5是负载模拟的一个过程,使用这些组件来完成负载的模拟 Y1:包含的 ...