The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6
 

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8


#include<stdio.h>
#include<algorithm> using namespace std; int inf=9999999;
int G[500][500]; int main()
{
fill(G[0],G[0]+500*500,inf);
int vnum;
int edgenum;
scanf("%d %d",&vnum,&edgenum);
for(int i=0;i<edgenum;i++)
{
int id1,id2;
scanf("%d %d",&id1,&id2);
scanf("%d",&G[id1][id2]);
G[id2][id1]=G[id1][id2];
}
int checknum;
scanf("%d",&checknum);
int min=2*inf;
int minid=-1;
for(int i=0;i<checknum;i++)
{
int potnum;
scanf("%d",&potnum);
int seq[potnum];
int dis=0;
bool mark[1000];
fill(mark,mark+1000,0);
for(int j=0;j<potnum;j++)
{
scanf("%d",&seq[j]);
mark[seq[j]]=true;
if(j!=0) dis+=G[seq[j-1]][seq[j]];
}
if(dis>=inf) printf("Path %d: NA (Not a TS cycle)\n",i+1);
else if(seq[0]!=seq[potnum-1]||potnum<vnum+1) printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
else if(potnum>vnum+1)
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
}
else if(seq[0]==seq[potnum-1])
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS simple cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else
{
printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
} } }
printf("Shortest Dist(%d) = %d",minid,min); }

1150 Travelling Salesman Problem的更多相关文章

  1. PAT 甲级 1150 Travelling Salesman Problem

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...

  2. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  4. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  5. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  6. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  7. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  8. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断

    Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...

随机推荐

  1. #3使用html+css+js制作网页 制作登录网页

    #3使用html+css+js制作网页 制作登录网页 本系列链接 2制作登录网页 2.1 准备 2.1.1 创建文件夹 2.1.2 创建主文件 2.2 html部分 2.2.1 网站信息 2.2.2 ...

  2. 【Spring】Spring JdbcTemplate

    Spring JdbcTemplate 文章源码 JdbcTemplate 概述 它是 Spring 框架中提供的一个对象,是对原始 Jdbc API 对象的简单封装.Spring 框架提供了很多的操 ...

  3. Js中函数式编程的理解

    函数式编程的理解 函数式编程是一种编程范式,可以理解为是利用函数把运算过程封装起来,通过组合各种函数来计算结果.函数式编程与命令式编程最大的不同其实在于,函数式编程关心数据的映射,命令式编程关心解决问 ...

  4. python函数1-函数基础

  5. ip访问本机vs调试项目

    环境:win10 vs2019 webapi F5启动调试. 问题:localhost可以访问,127.0.0.1和本机ip访问不了.比如想让别人浏览一下看效果,或者测试人员测试功能,每次修改都有重新 ...

  6. Hive Query生命周期 —— 钩子(Hook)函数篇

    无论你通过哪种方式连接Hive(如Hive Cli.HiveServer2),一个HQL语句都要经过Driver的解析和执行,主要涉及HQL解析.编译.优化器处理.执行器执行四个方面. 以Hive目前 ...

  7. 摆脱 996——GitHub 热点速览 v.21.03

    作者:HelloGitHub-小鱼干 Twitter 有位程序员总结了本周的 GitHub 中文程序员的看点:国内程序员日常--考公务员.996.抢茅台.刷算法.整健康码.在本期热点速览里,小鱼干收录 ...

  8. 一文读懂 Kubernetes APIServer 原理

    前言 整个Kubernetes技术体系由声明式API以及Controller构成,而kube-apiserver是Kubernetes的声明式api server,并为其它组件交互提供了桥梁.因此加深 ...

  9. B树的进化版----B+树

    C++为什么叫C plus plus?这是由于C++相当于继承C的语法后,增加了各方面的能力,所扩展出的一种新语法.在软件领域中 plus 有增加的味道.在这里B +树也一样,是B树的增强版.在学习B ...

  10. 卷积神经网络学习笔记——SENet

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和SE ...