The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6
 

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8


#include<stdio.h>
#include<algorithm> using namespace std; int inf=9999999;
int G[500][500]; int main()
{
fill(G[0],G[0]+500*500,inf);
int vnum;
int edgenum;
scanf("%d %d",&vnum,&edgenum);
for(int i=0;i<edgenum;i++)
{
int id1,id2;
scanf("%d %d",&id1,&id2);
scanf("%d",&G[id1][id2]);
G[id2][id1]=G[id1][id2];
}
int checknum;
scanf("%d",&checknum);
int min=2*inf;
int minid=-1;
for(int i=0;i<checknum;i++)
{
int potnum;
scanf("%d",&potnum);
int seq[potnum];
int dis=0;
bool mark[1000];
fill(mark,mark+1000,0);
for(int j=0;j<potnum;j++)
{
scanf("%d",&seq[j]);
mark[seq[j]]=true;
if(j!=0) dis+=G[seq[j-1]][seq[j]];
}
if(dis>=inf) printf("Path %d: NA (Not a TS cycle)\n",i+1);
else if(seq[0]!=seq[potnum-1]||potnum<vnum+1) printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
else if(potnum>vnum+1)
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
}
else if(seq[0]==seq[potnum-1])
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS simple cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else
{
printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
} } }
printf("Shortest Dist(%d) = %d",minid,min); }

1150 Travelling Salesman Problem的更多相关文章

  1. PAT 甲级 1150 Travelling Salesman Problem

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...

  2. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  4. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  5. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  6. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  7. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  8. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断

    Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...

随机推荐

  1. C#处理医学图像(二):基于Hessian矩阵的医学图像增强与窗宽窗位

    根据本系列教程文章上一篇说到,在完成C++和Opencv对Hessian矩阵滤波算法的实现和封装后, 再由C#调用C++ 的DLL,(参考:C#处理医学图像(一):基于Hessian矩阵的血管肺纹理骨 ...

  2. 基于 MapReduce 的单词计数(Word Count)的实现

    完整代码: // 导入必要的包 import java.io.IOException; import java.util.StringTokenizer; import org.apache.hado ...

  3. 【Oracle】查看oracle表空间大小及增加表空间的几种方法

    在oracle中表空间是必不可少的.但是怎么查看表空间呢 简单的查看方式是: SQL> select tablespace_name from dba_tablespaces; 想要查看表空间对 ...

  4. Windows10下Canvas对象获得屏幕坐标不正确的原因排查与处理

    因为Canvas没有直接将画布内容保存为图片的方法,所以很多时候是通过获得Canvas画布的坐标,然后通过截图的方式来将画布内容保存为本地图片. 如何取得Canvas画布的坐标呢,比较简单实用的方式如 ...

  5. 入门OJ:亲戚

    题目描述 或许你并不知道,你的某个朋友是你的亲戚.他可能是你的曾祖父的外公的女婿的外甥女的表姐的孙子.如果能得到完整的家谱,判断两个人是否亲戚应该是可行的,但如果两个人的最近公共祖先与他们相隔好几代, ...

  6. 带你走进memcache,老牌内存缓存技术

    一.核心优化概述 什么是优化:以更小的资源支持更大负载网站的运行,以小博大. 思路:尽量减少用户等待时间,节省系统资源开销,节省带宽使用. 优化什么地方?有三方面:Memcache内存缓存技术.静态化 ...

  7. JS获取本机地址,生成地图

    dome代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  8. linux总线

    编写驱动程序: 1 #include <linux/init.h> 2 #include <linux/module.h> 3 #include <linux/devic ...

  9. HTML5与CSS3知识点总结

    好好学习,天天向上 本文已收录至我的Github仓库DayDayUP:github.com/RobodLee/DayDayUP,欢迎Star 原文链接:https://blog.csdn.net/we ...

  10. uniapp根据登录用户的角色动态的改变tabBar的数量和内容

    此文章借鉴于https://blog.csdn.net/fuyuumiai/article/details/109746357,在此基础上修改小部分内容,适用于我这种uniapp小白 介绍: 现在我们 ...