2019 Multi-University Training Contest 7 Kejin Player(期望)
题意:给定在当前等级升级所需要的花费 每次升级可能会失败并且掉级 然后q次询问从l到r级花费的期望
思路:对于单次升级的期望 我们可以列出方程:
所以我们可以统计一下前缀和 每次询问O1回答
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
const int N = 5e5+7;
const int inf = 0x3f3f3f3f;
const double eps = 1e-6;
typedef long long ll;
const ll mod = 1e9+7;
ll dp[N],r[N],s[N],x[N],a[N];
ll q_pow(ll a,ll n){
ll ans=1; ll base=a;
while(n){
if(n&1) ans=(ans*base)%mod;
base=base*base%mod;
n>>=1;
}
return ans;
}
ll inv(ll a,ll b){
return q_pow(a,b-2);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int t;
cin>>t;
while(t--){
int n,q; cin>>n>>q;
for(int i=1;i<=n;i++){
cin>>r[i]>>s[i]>>x[i]>>a[i];
}
for(int i=1;i<=n;i++){
dp[i+1]=(s[i]*((dp[i]+a[i])%mod)%mod-(s[i]-r[i])%mod*dp[x[i]]%mod+mod)%mod*inv(r[i],mod)%mod;
}
for(int i=1;i<=q;i++){
int l,r;
cin>>l>>r;
cout<<(dp[r]-dp[l]+mod)%mod<<endl;
}
}
}
2019 Multi-University Training Contest 7 Kejin Player(期望)的更多相关文章
- 2019 Multi-University Training Contest 7 Kejin Player 期望dp
题目传送门 题意:有n个等级,在每个等级花费$ai$的代价有$pi$的几率升到$i+1$级,$1-pi$的概率降级降到$xi$(xi<=i),给出q次询问,每次询问从$l$级到$r$级的代价的期 ...
- 2019 Multi-University Training Contest 7 Kejin Player Final Exam
Kejin Player 期望DP 题意: 初始等级为1,每一级有四个参数 r , s , x , a . 每一级有一个概率p=r/s花费a的代价升级到下一级,失败可能会倒退到x级 设从 l 到 r ...
- HDU 6656 Kejin Player (期望DP 逆元)
2019 杭电多校 7 1011 题目链接:HDU 6656 比赛链接:2019 Multi-University Training Contest 7 Problem Description Cub ...
- 2019 Nowcoder Multi-University Training Contest 4 E Explorer
线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...
- 2019 Nowcoder Multi-University Training Contest 1 H-XOR
由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...
- 2019 Multi-University Training Contest 7
2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...
- 2019 Multi-University Training Contest 8
2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...
- 2019 Multi-University Training Contest 1
2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...
- 2019 Multi-University Training Contest 2
2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...
随机推荐
- WPF学习笔记01_XAML之简介
简介 XAML (发音"zammel" 咋么儿),用于实例化.NET对象的标记语言,主要用于构造WPF的用户界面.类似html标记语言. 通过XAML,程序员可以用代码的方式对界面 ...
- VMware 安装 Centos7 超详细过程
https://www.runoob.com/w3cnote/vmware-install-centos7.html centos7安装参考文档 VMware 安装 Centos7 超详细过程 分类 ...
- 【SpringMVC】SpringMVC 异常处理
SpringMVC 异常处理 文章源码 异常处理思路 系统中异常包括两类:预期异常和运行时异常,前者通过捕获异常从而获取异常信息,后者主要通过规范代码开发.测试通过手段减少运行时异常的发生. Cont ...
- 【Qt】实现程序重启的两种方法
Qt5/PyQt5 实现程序重启的两种方法 前言 最近在写一个开源项目,需要实现一个程序自动重启的功能.尝试了好几种方式,效果均不太理想. 一开始的实现思路是,记为思路一吧.大概就是写一些 shell ...
- 诸葛 VS 庞统,拿下 Paxos 共识算法
前言 分布式确实是一个有趣的话题,只要你留心观察,分布式在生活中无处不在. 悟空哥最开始学习分布式是从一篇非常用心写的技术征文开始的,而且这篇文章获得了征文第一名,在此感谢掘金社区提供的平台.想学习的 ...
- window安装nvm
先说一下背景,最近做的两个项目一个是祖传angularjs1.X版本另一个是react hooks结合tailwindcss,前者angularjs的node版本比较低,而tailwindcss的no ...
- SYSTEM_SHMCONSTR_LOGON_FAILED错误解决办法
如果你在调用WebDynpro程序时,发现st22里有如上图所示的报错信息,可以参考note:1318269所列举的方法来进行处理.大概的方法就是,通过SE80,执行任意的webdypro程序,例如& ...
- Trino总结
文章目录 1.Trino与Spark SQL的区别分析 2.Trino与Spark SQL解析过程对比 3.Trino基本概念 4.Trino架构 5.Trino SQL执行流程 6.Trino Ta ...
- 如何在K8s,Docker-Compose注入镜像Tag
最近在做基于容器的CI/CD, 一个朴素的自动部署的思路是: 从Git Repo打出git tag,作为镜像Tag ssh远程登录到部署机器 向部署环境注入镜像Tag,拉取镜像,重新部署 下面分享我是 ...
- 获取html中某些标签的值
一.获取单选按钮radio的值 <!doctype html> <html lang="en"> <head> <meta charset ...