题意:给定在当前等级升级所需要的花费 每次升级可能会失败并且掉级 然后q次询问从l到r级花费的期望

思路:对于单次升级的期望 我们可以列出方程:

所以我们可以统计一下前缀和 每次询问O1回答

#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
const int N = 5e5+7;
const int inf = 0x3f3f3f3f;
const double eps = 1e-6;
typedef long long ll;
const ll mod = 1e9+7;
ll dp[N],r[N],s[N],x[N],a[N];
ll q_pow(ll a,ll n){
ll ans=1; ll base=a;
while(n){
if(n&1) ans=(ans*base)%mod;
base=base*base%mod;
n>>=1;
}
return ans;
}
ll inv(ll a,ll b){
return q_pow(a,b-2);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int t;
cin>>t;
while(t--){
int n,q; cin>>n>>q;
for(int i=1;i<=n;i++){
cin>>r[i]>>s[i]>>x[i]>>a[i];
}
for(int i=1;i<=n;i++){
dp[i+1]=(s[i]*((dp[i]+a[i])%mod)%mod-(s[i]-r[i])%mod*dp[x[i]]%mod+mod)%mod*inv(r[i],mod)%mod;
}
for(int i=1;i<=q;i++){
int l,r;
cin>>l>>r;
cout<<(dp[r]-dp[l]+mod)%mod<<endl;
}
}
}

2019 Multi-University Training Contest 7 Kejin Player(期望)的更多相关文章

  1. 2019 Multi-University Training Contest 7 Kejin Player 期望dp

    题目传送门 题意:有n个等级,在每个等级花费$ai$的代价有$pi$的几率升到$i+1$级,$1-pi$的概率降级降到$xi$(xi<=i),给出q次询问,每次询问从$l$级到$r$级的代价的期 ...

  2. 2019 Multi-University Training Contest 7 Kejin Player Final Exam

    Kejin Player 期望DP 题意: 初始等级为1,每一级有四个参数 r , s , x , a . 每一级有一个概率p=r/s花费a的代价升级到下一级,失败可能会倒退到x级 设从 l 到 r ...

  3. HDU 6656 Kejin Player (期望DP 逆元)

    2019 杭电多校 7 1011 题目链接:HDU 6656 比赛链接:2019 Multi-University Training Contest 7 Problem Description Cub ...

  4. 2019 Nowcoder Multi-University Training Contest 4 E Explorer

    线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...

  5. 2019 Nowcoder Multi-University Training Contest 1 H-XOR

    由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...

  6. 2019 Multi-University Training Contest 7

    2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...

  7. 2019 Multi-University Training Contest 8

    2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...

  8. 2019 Multi-University Training Contest 1

    2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...

  9. 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...

随机推荐

  1. TeamView WaitforConnectFailed错误原因

    更新到最新版本并重启如下服务 检查TCP IPV4是否选中

  2. js原型链原理

    先附上原型链的图,能看懂的本文就没必要看了,看不懂的可以带着疑问看文章 一.构造函数 什么是构造函数:当一个普通函数创建一个类对象是,那么就程它为构造函数. 特点: 默认首字母大写 使用new关键字来 ...

  3. 【渲染教程】使用3ds Max和ZBrush制作卡通风格的武器模型(上)

    克里斯蒂娜·马丁(CristinaMartín)介绍了她的项目灵剑(Spirit Sword)的制作过程,并详细的展示了使用3ds Max和ZBrush制作模型,纹理绘画和最终展示的过程. 介绍 克里 ...

  4. dotnet高性能buffer

    1 前言 我曾经写过<杂谈.netcore的Buffer相关新类型>的博客,简单介绍过BinaryPrimitives.Span<>,Memory<>,ArrayP ...

  5. 一文带你学会AQS和并发工具类的关系2

    1.创建公平锁 1.使用方式 Lock reentrantLock = new ReentrantLock(true); reentrantLock.lock(); //加锁 try{ // todo ...

  6. Centos搭建Git服务端

    首先需要安装git,可以使用yum源在线安装 yum install -y git 创建一个git用户,用来运行管理git服务 adduser git 初始化git仓库(这里我们选择/home/git ...

  7. 【Linux】saltstack的使用详解 超详细

    一.salt常用命令 salt 该命令执行salt的执行模块,通常在master端运行,也是我们最常用到的命令 salt [options] '<target>' <function ...

  8. java锁的对象引用

    当访问共享的可变数据时,通常需要同步.一种避免使用同步的方式就是不共享数据. 如果数据仅在单线程内访问,就不需要同步,这种技术称为"线程封闭",它是实现线程安全性最简单方式之一. ...

  9. DOS的FOR命令用法总结

    鉴于dos自带的关于for命令的帮助信息看起来太简单,自己总结了一下,并增加了必要的实例,以备日后自己查阅.其中一些地方可能存在理解错误,敬请指出. [转发请注明出处]

  10. HTML基础复习2

    6.表格 6.1建立表格: 表格由<table></table>标签来定义 每行由<tr></tr>来定义,每行被分割为若干单元格,由<td> ...