Toy Storage
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3146   Accepted: 1798

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore. 
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top: 

We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1
跟上一题差不多,只不过线的顺序成了乱序,需要进行排序。输出方式发生变化。
最好少用while()进行循环,会将循环次数的值最后变为0,在再次使用这个数值时容易遗忘。
#include<cstring >
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std; struct Point {
int x,y;
Point (){};
Point(int _x,int _y)
{
x=_x,y=_y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
int operator *(const Point &b)const
{
return x*b.x+y*b.y;
}
int operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
}; struct Line{
Point s,e;
Line(){};
Line(Point _s,Point _e)
{
s=_s,e=_e;
}
}; int xmult(Point p0,Point p1,Point p2)
{
return (p1-p0)^(p2-p0);
} bool cmp(Line a,Line b)//按照线的第一个点的横坐标进行的排序(题干中线段不会交叉,所以随便选取坐标进行排序)
{
return a.s.x<b.s.x;
} const int MAXN=1050;
Line line[MAXN];
int ans[MAXN];
int sum[MAXN];
int main ()
{
int n,m,x1,y1,x2,y2;
while(cin>>n,n)
{
cin>>m>>x1>>y1>>x2>>y2;
int U,L;
for(int i=0;i<n;i++)
{
cin>>U>>L;
line[i]=Line(Point(U,y1),Point(L,y2));
}
line[n]=Line(Point(x2,y1),Point(x2,y2));//s上边点
sort(line,line+n+1,cmp);
int x,y;
Point p;
memset(ans,0,sizeof(ans));
memset(sum,0,sizeof(sum));
for(int i=0;i<m;i++)
{
cin>>x>>y;
p=Point(x,y);
int l=0,r=n;
while(l<r)
{
int mid=(l+r)/2;
if(xmult(p,line[mid].e,line[mid].s)>0)
r=mid;
else
l=mid+1;
}
ans[l]++;
}
for(int i=0;i<=n;i++)
sum[ans[i]]++;
cout<<"Box"<<endl;
for(int i=1;i<=m;i++)
if(sum[i]>0)
cout<<i<<": "<<sum[i]<<endl;
}
return 0;
}

poj 2398Toy Storage的更多相关文章

  1. POJ 2398--Toy Storage(叉积判断,二分找点,点排序)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6534   Accepted: 3905 Descr ...

  2. POJ 2398 - Toy Storage 点与直线位置关系

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5439   Accepted: 3234 Descr ...

  3. POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3146   Accepted: 1798 Descr ...

  4. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  5. poj 2398 Toy Storage(计算几何 点线关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4588   Accepted: 2718 Descr ...

  6. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  7. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  8. POJ 2398 Toy Storage

    这道题和POJ 2318几乎是一样的. 区别就是输入中坐标不给排序了,=_=|| 输出变成了,有多少个区域中有t个点. #include <cstdio> #include <cma ...

  9. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

随机推荐

  1. linux最大打开文件句柄数

    linux最大打开文件句柄数,即打开文件数最大限制,就是规定的单个进程能够打开的最大文件句柄数量(Socket连接也算在里面,默认大小1024) liunx中文件句柄有两个限制,一种是用户级的,一种是 ...

  2. 【栈和队列】5、队列概述与数组队列的基本实现 - Java

    3-5 数组队列 简单记录 - bobo老师的玩转算法系列–玩转数据结构 - 栈和队列 队列Queue 队列也是一种线性结构 相比数组,队列对应的操作是数组的子集 只能从一端(队尾)添加元素,只能从另 ...

  3. 【Linux】make编译的小技巧

    ------------------------------------------------------------------------------------------------- | ...

  4. 关于cin, cin.get(), getchar(),getline()的字符问题

    一.getchar()和cin.get() getchar()会将开头的空格或者回车作为输入 1 #include<iostream> 2 using namespace std; 3 i ...

  5. CTFHub - Web(四)

    最近又是每天忙到裂开,,,淦 xss: 反射型: 1.第一个输入框与下面Hello后的内容相同,猜测可以通过该输入,改变页面内容. 测试语句: <script>alert(1)</s ...

  6. Oracle Rac to Rac One Node

    =~=~=~=~=~=~=~=~=~=~=~= PuTTY log 2020.01.14 20:05:12 =~=~=~=~=~=~=~=~=~=~=~= [oracle@rac01 ~]$ srvc ...

  7. 使用bapi创建PO遇到问题(BAPI_PO_CREATE1

    今天用 BAPI_PO_CREATE1创建po. 注意事项: vendor 供应商号:长度必须和系统一致,10位.如 2000025要写成 0002000025传递给参数. POITEM 中的 PO_ ...

  8. JAVA之路_假克隆、浅克隆、深克隆

    一.JAVA假克隆 Java中,对于基本类型,可以用"="进行克隆,而对于引用类型却不能简单的使用"="进行克隆,这与JAVA的内存使用空间有关,JAVA在栈中 ...

  9. SW3516中文资料书

    SW3516 是一款高集成度的快充车充芯片, 支持 A+C 口任意口快充输出, 支持双口独立限流.其集成了 5A 高效率同步降压变换器, 支持 PPS/PD/QC/AFC/FCP/SCP/PE/SFC ...

  10. k8s之共享存储概述以及演示

    共享存储机制 k8s对有状态的容器应用或者需要对数据进行持久化的应用,在之前的篇章说过,可以将容器内的目录挂载到宿主机的容器目录或者emptyDir临时存储卷. 另外,k8s还开放了两个资源,分别是P ...