基于 MPI 的快速排序算法的实现
完整代码:
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <algorithm>
#include <cmath>
#include <mpi.h>
using namespace std;
struct Pair {
int left;
int right;
};
const int MAX_PROCESS = 128;
const int NUM = 8000;
const int MAX = 1000000;
const int MIN = 0;
int arr[NUM];
int temp[NUM];
Pair pairs[MAX_PROCESS];
int counter = -1;
void swap(int A[], int i, int j) {
int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
int findpivot(int i, int j) {
return (i + j) / 2;
}
int partition(int A[], int l, int r, int pivot) {
do {
while (A[++l] < pivot);
while ((r != 0 && (A[--r] > pivot)));
swap(A, l, r);
} while (l < r);
swap(A, l, r);
return l;
}
void quicksort(int A[], int i, int j, int currentdepth, int targetdepth) {
if (currentdepth == targetdepth) {
int rank = ++counter;
pairs[rank].left = i;
pairs[rank].right = j;
cout << pairs[rank].left << " and " << pairs[rank].right << " : rank " << rank << endl;
return;
}
if (j <= i) return;
int pivotindex = findpivot(i, j);
swap(A, pivotindex, j);
int k = partition(A, i - 1, j, A[j]);
swap(A, k, j);
quicksort(A, i, k - 1, currentdepth + 1, targetdepth);
quicksort(A, k + 1, j, currentdepth + 1, targetdepth);
}
void quicksort(int A[], int i, int j) {
if (j <= i) return;
int pivotindex = findpivot(i, j);
swap(A, pivotindex, j);
int k = partition(A, i - 1, j, A[j]);
swap(A, k, j);
quicksort(A, i, k - 1);
quicksort(A, k + 1, j);
}
int main(int argc, char* argv[]) {
MPI_Init(&argc, &argv);
int RANK, SIZE, targetdepth, left, right, REAL_SIZE;
MPI_Comm_rank(MPI_COMM_WORLD, &RANK);
MPI_Comm_size(MPI_COMM_WORLD, &SIZE);
REAL_SIZE = SIZE;
if (RANK == 0) {
cout << "Quick sort start..." << endl;
cout << "Generate random data... ";
memset(arr, 0, NUM * sizeof(arr[0]));
srand(time(NULL));
for (int i = 0; i < NUM; i++) {
arr[i] = MIN + rand() % (MAX - MIN);
}
cout << "Done." << endl;
targetdepth = log2(SIZE);
cout << "Rank: " << RANK << endl;
cout << "Sorting... ";
quicksort(arr, 0, NUM - 1, 0, targetdepth);
REAL_SIZE = counter + 1;
for (int i = 1; i < SIZE; i++) {
int left = pairs[i].left;
int right = pairs[i].right;
MPI_Send(&REAL_SIZE, 1, MPI_INT, i, 99, MPI_COMM_WORLD);
MPI_Send(&left, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
MPI_Send(&right, 1, MPI_INT, i, 1, MPI_COMM_WORLD);
MPI_Send(&arr, NUM, MPI_INT, i, 2, MPI_COMM_WORLD);
}
left = pairs[0].left;
right = pairs[0].right;
quicksort(arr, left, right);
cout << "Process " << RANK <<" done."<< endl;
}
for (int process = 1; process < REAL_SIZE; process++) {
if (RANK == process) {
MPI_Status status;
MPI_Recv(&REAL_SIZE, 1, MPI_INT, 0, 99, MPI_COMM_WORLD, &status);
MPI_Recv(&left, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(&right, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status);
MPI_Recv(&arr, NUM, MPI_INT, 0, 2, MPI_COMM_WORLD, &status);
if (process < REAL_SIZE) {
quicksort(arr, left, right);
MPI_Send(&arr, NUM, MPI_INT, 0, 0, MPI_COMM_WORLD);
cout << "Process " << RANK << " done." << endl;
}
}
}
if (RANK == 0) {
for (int i = 1; i < REAL_SIZE; i++) {
//cout << "Master is ready to receive data from process " << i << endl;
MPI_Status status;
MPI_Recv(&temp, NUM, MPI_INT, i, 0, MPI_COMM_WORLD, &status);
for (int j = pairs[i].left; j <= pairs[i].right; j++) {
arr[j] = temp[j];
}
//cout << "Master has combined data from process " << i << endl;
}
cout << "Done." << endl;
cout << "Result:" << endl;
int counter = 1;
int row = 20;
for (int i = 0; i < NUM; i++, counter++) {
cout << arr[i] << " ";
if (arr[i] < arr[max(i - 1, 0)]) {
cerr << "Invalid! " << arr[i] << " > "<< arr[max(i - 1, 0)] <<" i is "<< i << endl;
}
if (counter % row == 0) cout << endl;
}
}
MPI_Finalize();
}
运行截图:

基于 MPI 的快速排序算法的实现的更多相关文章
- 基于c++的ostu算法的实现
图像二值化算法是图像处理的基础.一般来说,二值化算法可以分为两个类别:全局二值化和局部二值化.全局二值化是指通过某种算法找到一个全局的阈值T,对图像中坐标为(x,y)的像素值做如下处理: Ostu就是 ...
- 快速排序算法的实现 && 随机生成区间里的数 && O(n)找第k小 && O(nlogk)找前k大
思路:固定一个数,把这个数放到合法的位置,然后左边的数都是比它小,右边的数都是比它大 固定权值选的是第一个数,或者一个随机数 因为固定的是左端点,所以一开始需要在右端点开始,找一个小于权值的数,从左端 ...
- Python八大算法的实现,插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。
Python八大算法的实现,插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得 ...
- 基于思岚A1激光雷达+OpenGL+VS2017的Ramer-Douglas-Peucker算法的实现
时隔两年 又借到了之前的那个激光雷达,最老版本的思岚A1,甚至不支持新的固件,并且转接板也不见了,看了下淘宝店卖¥80,但是官方提供了一个基于STM32的实现方式,于是我估摸着这个转接板只是一个普通的 ...
- Canny边缘检测算法的实现
图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波.我们知道微分运算是求信号的变化率,具有加强高频分量的作用.在空域运算中来说,对图像的锐化就是计算微分.由于数字图像的离散信号, ...
- SSE图像算法优化系列十三:超高速BoxBlur算法的实现和优化(Opencv的速度的五倍)
在SSE图像算法优化系列五:超高速指数模糊算法的实现和优化(10000*10000在100ms左右实现) 一文中,我曾经说过优化后的ExpBlur比BoxBlur还要快,那个时候我比较的BoxBlur ...
- C++基础代码--20余种数据结构和算法的实现
C++基础代码--20余种数据结构和算法的实现 过年了,闲来无事,翻阅起以前写的代码,无意间找到了大学时写的一套C++工具集,主要是关于数据结构和算法.以及语言层面的工具类.过去好几年了,现在几乎已经 ...
- 排序算法的实现之Javascript(常用)
排序算法的实现之Javascript 话不多说,直接代码. 1.冒泡排序 1.依次比较相邻的两个数,如果前一个比后一个大,则交换两者的位置,否则位置不变 2.按照第一步的方法重复操作前length-1 ...
- Alink漫谈(六) : TF-IDF算法的实现
Alink漫谈(六) : TF-IDF算法的实现 目录 Alink漫谈(六) : TF-IDF算法的实现 0x00 摘要 0x01 TF-IDF 1.1 原理 1.2 计算方法 0x02 Alink示 ...
随机推荐
- sql语句执行次序
from→on→join→where→group by→having→select→distinct→order by→limit
- 利用vs pcl库将多个PCD文件合并成一张PCD地图
主机环境:win10系统,pcl库1.11.1, vs2019 pcl库安装以及环境配置如下连接: https://www.jb51.net/article/190710.htm 代码很简单,主要是做 ...
- C# 高性能对象映射
1.之前在使用AutoMapper 框架感觉用着比较不够灵活,而且主要通过表达式树Api 实现对象映射 ,写着比较讨厌,当出现复杂类型和嵌套类型时性能直线下降,甚至不如序列化快. 2.针对AutoMa ...
- 数据结构,哈希表hash设计实验
数据结构实验,hash表 采用链地址法处理hash冲突 代码全部自己写,转载请留本文连接, 附上代码 #include<stdlib.h> #include<stdio.h> ...
- Python爬虫之BeautifulSoup库
1. BeautifulSoup 1.1 解析库 1)Python标准库 # 使用方法 BeautifulSoup(markup, "html.parser") # 优势 Pyth ...
- UWP 实现Tab导航首页
先看效果: 这个是用Pivot来实现 1.自定义Pivot的样式,使用Blend工具生成模板,将HeaderTemplate的布局都隐藏 1 <Style x:Key="PivotSt ...
- CODING DevOps 线下沙龙回顾二:SDK 测试最佳实践
讲师:潘志刚 声网质量效能部门负责人,超过 14 年服务器.移动终端.音视频编解码以及汽车电子等跨行业从业经历,负责建立测试基础架构和自动化测试方案,主持搭建持续集成测试生态体系.现任声网质量效能部门 ...
- webform中按钮触发事件顺序
执行顺序 先执行js端的方法,后执行后台的方法 一般js端方法用做数据的校验,校验成功 return true;后才执行后台的方法. 示例 <asp:Button runat="ser ...
- 使用xshell软件进行文件的上传和下载
1.选择xshell的文件里面的属性-->文件传输,把上传路径和下载路径设置好. 上传路径:介绍我们需要向Linux系统里面传东西. 下载路径:就是我们把Linux系统里面的大小拷贝出来. 2. ...
- 容器编排系统K8s之ConfigMap、Secret资源
前文我们了解了k8s上的pv/pvc/sc资源的使用和相关说明,回顾请参考:https://www.cnblogs.com/qiuhom-1874/p/14188621.html:今天我们主要来聊一下 ...