线段树

难得把E想出来,写出来,但却没有调出来(再给我5分钟),我的紫名啊,我一场上紫的大好机会啊


首先考虑是否能将$k$在$1$--$n-1$的每一个的最小代价都求出来

因为$k$从$i$到$i-1$左右两边的集合只相差一个数,所以可以考虑递推

可以发现如果最终满足条件,那么左边集合的最大数一定为该集合当前的大小

且在每一个小于此大小的数都存在于左边这个集合中

由于给出的序列是一个排列,每一个数的范围是$1$--$n$

那么只要对于每一个k都进行枚举左边集合的大小计算代价,取最小值,就是该取该k时最小值

但直接暴力枚举的复杂度时$O(n^{2})$的

那么可以线段树维护以左边集合大小为每一个元素的序列

我们让$k$从$n-1$到$1$开始考虑递推

对于将$k$减一,左边集合只差了一个数

设这个数为$p$,代价为$v$

那么这个数对枚举左边集合大小的影响即是

集合大小为$p$-$n$的代价$+v$

集合大小为$0$-$p-1$的代价$-v$

然后线段树维护区间修改即可

 1 #include <bits/stdc++.h>
2 #define m_k make_pair
3 #define int long long
4 #define inf (int)1e18
5 using namespace std;
6 const int N=2*1e5+100;
7 int n,p[N],v[N],sum[N],ans;
8 struct node
9 {
10 int MIN,lazy;
11 }sh[N*4];
12 void pushup(int x)
13 {
14 sh[x].MIN=min(sh[x+x].MIN,sh[x+x+1].MIN);
15 }
16 void pushdown(int x)
17 {
18 int v=sh[x].lazy;
19 sh[x+x].lazy+=v;
20 sh[x+x].MIN+=v;
21 sh[x+x+1].lazy+=v;
22 sh[x+x+1].MIN+=v;
23 sh[x].lazy=0;
24 }
25 void build(int x,int l,int r)
26 {
27 if (l==r)
28 {
29 sh[x].lazy=0;
30 sh[x].MIN=sum[n]-sum[l];//此时将k取到n,所有元素都在左边集合
31 return;
32 }
33 int mid=(l+r)>>1;
34 build(x+x,l,mid);
35 build(x+x+1,mid+1,r);
36 pushup(x);
37 }
38 void change(int x,int l,int r,int L,int R,int v)//线段树维护区间修改
39 {
40 if (L<=l && R>=r)
41 {
42 sh[x].MIN+=v;
43 sh[x].lazy+=v;
44 return;
45 }
46 pushdown(x);
47 int mid=(l+r)>>1;
48 if (L<=mid) change(x+x,l,mid,L,R,v);
49 if (R>mid) change(x+x+1,mid+1,r,L,R,v);
50 pushup(x);
51 }
52 signed main()
53 {
54 scanf("%lld",&n);
55 for (int i=1;i<=n;i++)
56 scanf("%lld",&p[i]);
57 for (int i=1;i<=n;i++)
58 {
59 int a;
60 scanf("%lld",&a);
61 v[p[i]]=a;//记录每一个数值的代价
62 }
63 for (int i=1;i<=n;i++) sum[i]=sum[i-1]+v[i];//计算前缀和
64 build(1,0,n);
65 ans=inf;//由于k不能取到n,所有ans不进行计算,直接赋值为inf
66 for (int i=n;i>=2;i--)
67 {
68 change(1,0,n,p[i],n,v[p[i]]);//同上
69 change(1,0,n,0,p[i]-1,-v[p[i]]);
70 ans=min(ans,sh[1].MIN);
71 }
72 printf("%lld\n",ans);
73 }

CF1295E Permutation Separation的更多相关文章

  1. [Educational Codeforces Round 81 (Rated for Div. 2)]E. Permutation Separation(线段树,思维,前缀和)

    [Educational Codeforces Round 81 (Rated for Div. 2)]E. Permutation Separation(线段树,思维,前缀和) E. Permuta ...

  2. Codeforces 1295E. Permutation Separation (线段树)

    https://codeforces.com/contest/1295/problem/E 建一颗线段树,叶子结点是花费从1到i所需要花费的前缀和,表示前i个元素全部移动到右边的花费,再维护区间最小值 ...

  3. Codeforces 1295E Permutation Separation

    题目链接 link Solution 暴力一眼就可以看出来,枚举分界点,然后左右两边统计答案即可,但复杂度是我们无法接受的 然后我们看我们可以优化哪一部分 \(1^0\) 枚举:这部分没有办法优化 \ ...

  4. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

  5. Educational Codeforces Round 81 (Rated for Div. 2) 题解

    过了n天补的题解:D AB就不用说了 C. Obtain The String 思路挺简单的,就是贪心,但是直接贪心的复杂度是O(|s|*|t|),会超时,所以需要用到序列自动机 虽然名字很高端但是就 ...

  6. Educational Codeforces Round 81 (Rated for Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1295 A. Display The Number 贪心思路,尽可能放置更多位,如果n为奇数,消耗3去放置一个7,剩下的放1 AC ...

  7. Codeforces Educational Round 81 解题报告

    前置扯淡 赛前:这场\(Div2\)呀,那我写\(3\)题就行,\(D\)题尽力就好 赛中:啊啊,\(ABC\)我全过了\(pretest\),我太强了!!这把上蓝稳了 赛后:\(woc\),为啥被\ ...

  8. Codeforces题解集 1.0

    记录 Codeforces 2019年12月19日到 2020年2月12日 的部分比赛题 Educational Codeforces Round 82 (Rated for Div. 2) D Fi ...

  9. 论文翻译:Conv-TasNet: Surpassing Ideal Time–Frequency Magnitude Masking for Speech Separation

    我醉了呀,当我花一天翻译完后,发现已经网上已经有现成的了,而且翻译的比我好,哎,造孽呀,但是他写的是论文笔记,而我是纯翻译,能给读者更多的思想和理解空间,并且还有参考文献,也不错哈,反正翻译是写给自己 ...

随机推荐

  1. matlab中nargin函数输入参数数目

    来源:https://ww2.mathworks.cn/help/matlab/ref/nargin.html?searchHighlight=nargin&s_tid=doc_srchtit ...

  2. 【题解】[SCOI]windy数

    Link 题目大意:求给定一个区间内满足每一位的数相差大于\(2\)且没有前导零的数的个数. \(\text{Solution:}\) 我们可以按照数位\(dp\).设状态为当前要\(dp\)第\(p ...

  3. 《To B产品经理进阶》

    一.沙漏哟:To B产品技术标准化(全网独家) 经济机器是怎样运行的(超级简单模式理解经济运行规律) <俞军产品方法论>(思维模型.交易模型.经济学.心理学) <深度思考六步法> ...

  4. CentOS 7 系统的安装

    1.进入安装界面 2.选择"Install CentOS 7" 3.进入欢迎界面,默认语言为"English",点击"Continue" 进 ...

  5. 2016年 实验二、C2C模拟实验

    实验二.C2C模拟实验 [实验目的] 掌握网上购物的基本流程和C2C平台的运营 [实验条件] ⑴.个人计算机一台 ⑵.计算机通过局域网形式接入互联网. (3).奥派电子商务应用软件 [知识准备] 本实 ...

  6. echo输出彩色文字

    开启转义功能 echo -e表示开启转义功能,比如: 彩色文字语法 echo -e "\e[前景;背景;特效m""hello""\e[0m" ...

  7. BUUCTF-misc九连环 详解

    这个没什么玄学,我们解压出来一张照片,放到hxd中搂一眼,最后结尾的那几行中看到了zip压缩包的结尾标识符,难道这里面还有压缩包,于是我们就formostlrb 果然有图片有压缩包 我们打开压缩包看到 ...

  8. Spring源码解析之基础应用(二)

    方法注入 在spring容器中,大部分bean的作用域(scope)是单例(singleton)的,少部分bean的作用域是原型(prototype),如果一个bean的作用域是原型,我们A bean ...

  9. 第十一章 LNMP架构基础介绍

    一.LNMP架构 1.简介 oLNMP是一套技术的组合,L=Linux.N=Nginx.M~=MySQL.P~=PHP不仅仅包含这些,还有redis/ELK/zabbix/git/jenkins/ka ...

  10. Linux创建用户时让每个用户家目录中自带说明文档

    新用户创建时模板文件放在/etc/skel中,只要在skel中放入相应文档,即可在创建用户时在其家目录中产生对应文档 [00:30:48 root@C8[ ~]#ll -a /etc/skel/ ## ...