洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP

题目描述

佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他。

玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化。现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可。

输入格式

输入的第一行有两个正整数 \(n,m\),分别表示序列的长度和变化的个数。

接下来一行有 \(n\) 个整数,表示这个数列原始的状态。

接下来 \(m\) 行,每行有 \(2\) 个整数 \(x,y\),表示数列的第 \(x\) 项可以变化成 \(y\) 这个值。

输出格式

输出一个整数,表示对应的答案。

输入输出样例

输入 #1

3 4

1 2 3

1 2

2 3

2 1

3 4

输出 #1

3

说明/提示

注意:每种变化最多只有一个值发生变化。

在样例输入中,所有的变化是:

1 2 3

2 2 3

1 3 3

1 1 3

1 2 4

选择子序列为原序列,即在任意一种变化中均为不降子序列。

对于 \(20\%\) 数据,所有数均为正整数,且小于等于 \(300\)。

对于 \(50\%\) 数据,所有数字均为正整数,且小于等于 \(3000\)。

对于 \(100\%\) 数据,所有数字均为正整数,且小于等于 \(10^5\)。\(1\le x\le n\)。

分析

我们设\(min[i]\)为处在位置\(i\)上的数变化得到的最小值,\(max[i]\)为处在位置\(i\)上的数变化得到的最大值,\(f[i]\)为以\(i\)结尾的最长上升子序列的长度

则\(f[i]=max(f[i],f[j]+1),j<i,max[j] \leq i,min[i] \geq j\)\

我们会发现这是一个三位偏序问题,可以用\(CDQ\)分治优化

代码

#include<cstdio>
#include<algorithm>
#include<iostream>
inline int read(){
int x=0,fh=1;
char ch=getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') fh=-1;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*fh;
}
const int maxn=1e6+5;
int f[maxn],a[maxn],mmax[maxn],mmin[maxn],tr[maxn],n,m;
int lb(int xx){
return xx&-xx;
}
void ad(int wz,int val){
for(int i=wz;i<maxn;i+=lb(i)){
tr[i]=std::max(tr[i],val);
}
}
int cx(int wz){
int ans=0;
for(int i=wz;i>0;i-=lb(i)){
ans=std::max(tr[i],ans);
}
return ans;
}
void qk(int wz){
for(int i=wz;i<maxn;i+=lb(i)){
tr[i]=0;
}
}
int tot=1,id[maxn];
bool cmp1(int aa,int bb){
return a[aa]<a[bb];
}
bool cmp2(int aa,int bb){
return mmin[aa]<mmin[bb];
}
void solve(int l,int r){
if(l==r) return;
int mids=(l+r)>>1;
solve(l,mids);
for(int i=l;i<=r;i++) id[i]=i;
std::sort(id+l,id+mids+1,cmp1);
std::sort(id+mids+1,id+r+1,cmp2);
int now=l;
for(int i=mids+1;i<=r;i++){
while(a[id[now]]<=mmin[id[i]] && now<=mids){
ad(mmax[id[now]],f[id[now]]);
now++;
}
f[id[i]]=std::max(f[id[i]],cx(a[id[i]])+1);
tot=std::max(tot,f[id[i]]);
}
for(int i=now-1;i>=l;i--){
qk(mmax[id[i]]);
}
solve(mids+1,r);
}
int main(){
n=read(),m=read();
for(int i=1;i<=n;i++){
a[i]=read();
mmax[i]=mmin[i]=a[i];
f[i]=1;
}
for(int i=1;i<=m;i++){
int aa,bb;
aa=read(),bb=read();
mmax[aa]=std::max(mmax[aa],bb);
mmin[aa]=std::min(mmin[aa],bb);
}
solve(1,n);
printf("%d\n",tot);
return 0;
}

洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP的更多相关文章

  1. BZOJ4553/洛谷P4093 [HEOI2016/TJOI2016]序列 动态规划 分治

    原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html 题目传送门 - BZOJ4553 题目传送门 - 洛谷P4093 题解 设$Li$表示第$ ...

  2. 洛谷 P4093 [HEOI2016/TJOI2016]序列 解题报告

    P4093 [HEOI2016/TJOI2016]序列 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一 ...

  3. 洛谷 P4093 [HEOI2016/TJOI2016]序列(Cdq+dp)

    题面 luogu 题解 \(Cdq分治+dp\) \(mx[i],mn[i]\)分别表示第\(i\)位最大,最小能取到多少 那么有 \(j < i\) \(mx[j] \le a[i]\) \( ...

  4. 洛谷P4093 [HEOI2016/TJOI2016]序列

    题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化.现在佳媛姐姐已经研究出了所有变化的可能性, ...

  5. 【洛谷P4093】 [HEOI2016/TJOI2016]序列 CDQ分治+动态规划

    你发现只会改变一个位置,所以可以直接进行dp 具体转移的话用 CDQ 分治转移就好了~ #include <bits/stdc++.h> #define N 100006 #define ...

  6. 洛谷 P5331 - [SNOI2019]通信(CDQ 分治优化建图+费用流)

    题面传送门 首先熟悉网络流的同学应该能一眼看出此题的建模方法: 将每个点拆成两个点 \(in_i,out_i\),连一条 \(S\to in_i\),容量为 \(1\) 费用为 \(0\) 的边 连一 ...

  7. [HEOI2016/TJOI2016]序列 CDQ分治

    ---题面--- 题解: 首先我们观察一下,如果一个点对(j, i), 要符合题中要求要满足哪些条件? 首先我们设 j < i 那么有: j < i max[j] < v[i] v[ ...

  8. luogu4093 序列 (cdq分治优化dp)

    设f[i]是以i位置为结尾的最长满足条件子序列的长度 那么j能转移到i的条件是,$j<i , max[j]<=a[i] , a[j]<=min[i]$,其中max和min表示这个位置 ...

  9. 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)

    洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...

随机推荐

  1. .NET和.NET Core Web APi FormData多文件上传对比

    前言 最近因维护.NET和.NET Core项目用到文件上传功能,虽说也做过,但是没做过什么对比,借此将二者利用Ajax通过FormData上传文件做一个总结,通过视图提交表单太简单,这里不做阐述,希 ...

  2. jQuery 多库共存

    多库共存 问题概述         jQuery使用$作为标识符,随着jQuery的流行,其他js的库也会用$作为标识符,这样就会引起冲突         需要一个解决方案 让jQuery和其他的JS ...

  3. 17、Observer 观察者模式

    以一个实例给大家引入观察者,大家多多少少都写过html或者java中的swing.我们定义一个按钮,给他增加一个点击事件,那么这个方法是怎么被触发到呢,对了,就是利用了观察者设计模式 观察者模式 当对 ...

  4. 2020-05-14:实现分布式Session的过程是怎样的?

    福哥答案2020-05-14: 此答案来自群员:分布式session ,最开始起源是双机热备,当时php1和php2为了共享session,一开始采用samba/nfs,后来php有了插件以后就扔当时 ...

  5. wordpress-技术博客主题推荐

    推荐主题 1.WordStar 这个主题是干净的,以博客为中心,设计清晰,简单,直接的排版,可在各种各样的屏幕尺寸可读,适合多种语言. 效果图 还是非常简洁, 基本和CSDN差不多了 除了没有广告以外 ...

  6. golang中type关键字使用

    type关键字使用 type是go语法里的重要而且常用的关键字,type绝不只是对应于C/C++中的typedef.搞清楚type的使用,就容易理解go语言中的核心概念struct.interface ...

  7. beego 快速入门

    原文链接:https://beego.me/quickstart 1.安装依赖 git clone http://github.com/astaxie/beego.git git clone http ...

  8. Linux下执行SQL文件

    最近在使用MySQL数据库时,想要执行一些sql文件,就想到了source命令. source介绍:source命令也称为“点命令”,也就是一个点符号(.),是bash的内部命令. 功能:使Shell ...

  9. CentOS 6.x/7.x上安装git

    yum安装 # yum info git # yum install -y git 可以通过下面的命令来检查是否安装了git环境 git --version 参考:如何在CentOS 6.x/7.x上 ...

  10. Locust性能测试1--简介安装及基本使用

    1. Locust简介 Locust是易于使用的分布式用户负载测试工具,旨在对网站(或其他系统)进行负载测试,并弄清一个系统可以处理多少个并发用户,Locust翻译过来是蝗虫的意思,在测试期间,意在一 ...