BERT 服务化 bert-as-service
bert-as-service 用 BERT 作为句子编码器, 并通过 ZeroMQ 服务托管, 只需两行代码就可以将句子映射成固定长度的向量表示;
准备
windows10 + python3.5 + tensorflow1.2.1
安装流程
- 安装 tensorflow, 参考
- 安装 bert-as-service
bert-as-service, 依赖于 python≥3.5 AND tensorflow≥1.10;
pip install bert-serving-server
pip instlal bert-serving-client
下载中文 bert 预训练的模型
BERT-Base, Uncased 12-layer, 768-hidden, 12-heads, 110M parameters BERT-Large, Uncased 24-layer, 1024-hidden, 16-heads, 340M parameters BERT-Base, Cased 12-layer, 768-hidden, 12-heads , 110M parameters BERT-Large, Cased 24-layer, 1024-hidden, 16-heads, 340M parameters BERT-Base, Multilingual Cased (New) 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters BERT-Base, Multilingual Cased (Old) 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters BERT-Base, Chinese Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters 启动 bert-as-serving 服务
bert-serving-start -model_dir /tmp/english_L-12_H-768_A-12/ -num_worker=2 //模型路径自改
usage: xxxx\Anaconda3\envs\py35\Scripts\bert-serving-start -model_dir D:\env\bert\chinese_L-12_H-768_A-12 -num_worker=2
ARG VALUE
__________________________________________________
ckpt_name = bert_model.ckpt
config_name = bert_config.json
cors = *
cpu = False
device_map = []
do_lower_case = True
fixed_embed_length = False
fp16 = False
gpu_memory_fraction = 0.5
graph_tmp_dir = None
http_max_connect = 10
http_port = None
mask_cls_sep = False
max_batch_size = 256
max_seq_len = 25
model_dir = D:\env\bert\chinese_L-12_H-768_A-12
no_position_embeddings = False
no_special_token = False
num_worker = 2
pooling_layer = [-2]
pooling_strategy = REDUCE_MEAN
port = 5555
port_out = 5556
prefetch_size = 10
priority_batch_size = 16
show_tokens_to_client = False
tuned_model_dir = None
verbose = False
xla = False
I:[35mVENTILATOR[0m:freeze, optimize and export graph, could take a while...
I:[36mGRAPHOPT[0m:model config: D:\env\bert\chinese_L-12_H-768_A-12\bert_config.json
I:[36mGRAPHOPT[0m:checkpoint: D:\env\bert\chinese_L-12_H-768_A-12\bert_model.ckpt
I:[36mGRAPHOPT[0m:build graph...
I:[36mGRAPHOPT[0m:load parameters from checkpoint...
I:[36mGRAPHOPT[0m:optimize...
I:[36mGRAPHOPT[0m:freeze...
I:[36mGRAPHOPT[0m:write graph to a tmp file: C:\Users\Memento\AppData\Local\Temp\tmpo07002um
I:[35mVENTILATOR[0m:bind all sockets
I:[35mVENTILATOR[0m:open 8 ventilator-worker sockets
I:[35mVENTILATOR[0m:start the sink
I:[32mSINK[0m:ready
I:[35mVENTILATOR[0m:get devices
W:[35mVENTILATOR[0m:no GPU available, fall back to CPU
I:[35mVENTILATOR[0m:device map:
worker 0 -> cpu
worker 1 -> cpu
I:[33mWORKER-0[0m:use device cpu, load graph from C:\Users\Memento\AppData\Local\Temp\tmpo07002um
I:[33mWORKER-1[0m:use device cpu, load graph from C:\Users\Memento\AppData\Local\Temp\tmpo07002um
I:[33mWORKER-0[0m:ready and listening!
I:[33mWORKER-1[0m:ready and listening!
I:[35mVENTILATOR[0m:all set, ready to serve request!
- 用 python 模拟调用 bert-as-service 服务
bc = BertClient(ip="localhost", check_version=False, check_length=False)
vec = bc.encode(['你好', '你好呀', '我很好'])
print(vec)
输出结果:
[[ 0.2894022 -0.13572647 0.07591158 ... -0.14091237 0.54630077
-0.30118054]
[ 0.4535432 -0.03180456 0.3459639 ... -0.3121457 0.42606848
-0.50814617]
[ 0.6313594 -0.22302179 0.16799903 ... -0.1614125 0.23098437
-0.5840646 ]]
亮点
-
BERT 服务化 bert-as-service的更多相关文章
- 干货 | 蚂蚁金服是如何实现经典服务化架构往 Service Mesh 方向的演进的?
干货 | 蚂蚁金服是如何实现经典服务化架构往 Service Mesh 方向的演进的? https://www.sohu.com/a/235575064_99940985 干货 | 蚂蚁金服是如何实现 ...
- 【译】BERT表示的可解释性分析
目录 从词袋模型到BERT 分析BERT表示 不考虑上下文的方法 考虑语境的方法 结论 本文翻译自Are BERT Features InterBERTible? 从词袋模型到BERT Mikol ...
- 采用Google预训bert实现中文NER任务
本博文介绍用Google pre-training的bert(Bidirectional Encoder Representational from Transformers)做中文NER(Name ...
- 5. BERT算法原理解析
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...
- 用深度学习做命名实体识别(六)-BERT介绍
什么是BERT? BERT,全称是Bidirectional Encoder Representations from Transformers.可以理解为一种以Transformers为主要框架的双 ...
- 图示详解BERT模型的输入与输出
一.BERT整体结构 BERT主要用了Transformer的Encoder,而没有用其Decoder,我想是因为BERT是一个预训练模型,只要学到其中语义关系即可,不需要去解码完成具体的任务.整体架 ...
- Google BERT摘要
1.BERT模型 BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,因为dec ...
- bert 硬件要求
https://github.com/google-research/bert BERT ***** New May 31st, 2019: Whole Word Masking Models *** ...
- pytorch bert 源码解读
https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks ...
随机推荐
- 关于贪心算法的经典问题(算法效率 or 动态规划)
如题,贪心算法隶属于提高算法效率的方法,也常与动态规划的思路相挂钩或一同出现.下面介绍几个经典贪心问题.(参考自刘汝佳著<算法竞赛入门经典>).P.S.下文皆是我一个字一个字敲出来的,绝对 ...
- 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)
题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...
- 吉哥系列故事——完美队形II(马拉车算法)
吉哥又想出了一个新的完美队形游戏! 假设有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求 ...
- SSL 数据加密原理简述
最近调试mqtt协议,为了保证数据安全性和将来客户端的对云的兼容性选择了openssl作为安全加密中间层,而没有使用私有的加密方式.所以花了点时间学习了一下ssl 加密流程整理如下: 因为正常正式使用 ...
- 将从摄像头即时读入的人像放入背景视频中_with_OpenCV_in_Python
import cv2 import numpy as np import time cap = cv2.VideoCapture(0) background_capture = cv2.VideoCa ...
- Object & prototype & __proto__ All In One
Object & prototype & proto All In One js 原型,原型链,原型对象 const obj ={}; // {} const obj = new Ob ...
- Linux 创建/编辑/查看 文件/文件夹的命令汇总
Linux 创建/编辑/查看 文件/文件夹的命令汇总 Linux 创建文件的命令Linux,编辑文件的命令Linux 查看文件的命令,touch,vim,vi,gedit,cat,ls -a, ls ...
- PIP & Python packages management
PIP & Python packages management $ python3 --version # OR $ python3 -V # Python 3.7.3 $ pip --ve ...
- CSS3 & Flex Layout All In One
CSS3 & Flex Layout All In One demos https://www.cnblogs.com/xgqfrms/p/10769302.html .flex-contai ...
- DoH & DNS over HTTPS
DoH & DNS over HTTPS DNS over HTTPS(DoH)服务 http://mozilla.com.cn/thread-422231-1-1.html https:// ...
- 干货 | 蚂蚁金服是如何实现经典服务化架构往 Service Mesh 方向的演进的?