【题目链接】 http://poj.org/problem?id=3709

【题目大意】

  给出一个长度为n个非严格单调递增数列,每次操作可以使得其中任意一项减一,
  问现在使得数列中每项数相同的数的数量都大于等于k-1,问最少进行几次操作

【题解】

  我们设dp[i]为前i项答案,得到方程dp[i]=min(dp[j]+S[i]-S[j]-aj*(i-j)),
  dp[i]=S[i]+min(dp[j]-S[j]+aj*j-aj*i),为关于i的线性函数,
  所以我们对f(y)=-ax*y+dp[x]-S[x]+ax*x进行斜率优化。

【代码】

#include <algorithm>
#include <cstdio>
#include <cstring>
typedef long long LL;
const int MAX_N=500010;
int n,k;
LL a[MAX_N],dp[MAX_N],S[MAX_N],deq[MAX_N];
LL f(int x,int y){return -a[x]*y+dp[x]-S[x]+a[x]*x;}
bool check(int f1,int f2,int f3){
LL a1=-a[f1],b1=dp[f1]-S[f1]+a[f1]*f1;
LL a2=-a[f2],b2=dp[f2]-S[f2]+a[f2]*f2;
LL a3=-a[f3],b3=dp[f3]-S[f3]+a[f3]*f3;
return (a2-a1)*(b3-b2)>=(b2-b1)*(a3-a2);
}
void solve(){
for(int i=0;i<n;i++)S[i+1]=S[i]+a[i];
int s=0,t=1;
deq[0]=0; dp[0]=0;
for(int i=k;i<=n;i++){
if(i-k>=k){
while(s+1<t&&check(deq[t-2],deq[t-1],i-k))t--;
deq[t++]=i-k;
}while(s+1<t&&f(deq[s],i)>=f(deq[s+1],i))s++;
dp[i]=S[i]+f(deq[s],i);
}printf("%lld\n",dp[n]);
}int T;
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++)scanf("%lld",&a[i]);
solve();
}return 0;
}

POJ 3709 K-Anonymous Sequence(斜率优化DP)的更多相关文章

  1. POJ 3709 K-Anonymous Sequence - 斜率优化dp

    描述 给定一个数列 $a$, 分成若干段,每段至少有$k$个数, 将每段中的数减少至所有数都相同, 求最小的变化量 题解 易得到状态转移方程 $F_i = \min(F_j  + sum_i - su ...

  2. [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP

    POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...

  3. POJ 1180 Batch Scheduling(斜率优化DP)

    [题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...

  4. poj 1180:Batch Scheduling【斜率优化dp】

    我会斜率优化了!这篇讲的超级棒https://blog.csdn.net/shiyongyang/article/details/78299894?readlog 首先列个n方递推,设sf是f的前缀和 ...

  5. POJ3709 K-Anonymous Sequence 斜率优化DP

    POJ3709 题意很简单 给n个递增整数(n<=500000)和一种操作(选择任意个数 使他们减少整数值) 使得对于所有的整数 在数列中 有k个相等的数 O(n^2)的DP方程很容易得出 如下 ...

  6. poj 1260 Pearls 斜率优化dp

    这个题目数据量很小,但是满足斜率优化的条件,可以用斜率优化dp来做. 要注意的地方,0也是一个决策点. #include <iostream> #include <cstdio> ...

  7. 斜率优化dp(POJ1180 Uva1451)

    学这个斜率优化dp却找到这个真心容易出错的题目,其中要从n倒过来到1的确实没有想到,另外斜率优化dp的算法一开始看网上各种大牛博客自以为懂了,最后才发现是错了. 不过觉得看那些博客中都是用文字来描述, ...

  8. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  9. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  10. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

随机推荐

  1. Android中使用RadioButton代替ImageButton

    画外音————好久没上来发文章了,这几个月一直忙着一些跟编程不沾边的事,拖了好久,现在还在持续中,顺利的话7月份应该能解放了..今天偶尔上来写一段番外篇性质的心得发现. 之前搞的Android项目,作 ...

  2. linux 条件判断式

    1.利用if ...then if [ 判断条件 ];then 指令 fi 实例一 Y/N: #!/bin/bash #Program: # This program shows "Hell ...

  3. [hdu 3068] Manacher算法O(n)最长回文子串

    一个不错的讲解:https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/01.05.md # ...

  4. HTML5 视频直播

    目前视频直播,尤其是移动端的视频直播已经火到不行了,基本上各大互联网公司都有了自己的直播产品,所以对于直播的一些基本知识和主要技术点也要有所了解,本次分享就向大家介绍一下其中的奥秘. 内容大体框架:  ...

  5. 解读dbcp自动重连那些事

    转载自:http://agapple.iteye.com/blog/791943 可以后另一篇做对比:http://agapple.iteye.com/blog/772507 同样的内容,不同的描述方 ...

  6. centos 安装mysql 笔记

    1.查询已安装软件的目录 rpm -ql mysql 2.mysql的安装卸载 a. 查找已安装的myslq 版本: #rpm  -qa | grep  mysql (注意大小写,如果mysql 不行 ...

  7. node搭建文件服务器

    python可以在目录下python -m http.server 8080来启动一个静态文件服务器,使用node实现一个 运行node fileServer.js D:\lanFeature 即可将 ...

  8. es6+最佳入门实践(10)

    10.Generator 10.1.Generator是什么? Generator函数是ES6提供的一种异步编程解决方案.在它的内部封装了多个状态,因此,又可以理解为一种状态机,执行Generator ...

  9. COGS727 [网络流24题] 太空飞行计划

    [问题描述] W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪 ...

  10. 【Luogu P3834】可持久化数组(可持久化线段树)

    题目链接 可持久化线段树模板题. 这里总结一下可持久化线段树. 可持久化数据结构就是能恢复历史状态的数据结构,比如可持久化\(Trie\),并查集,平衡树. 可持久化数组是最基础的,这里通过可持久化线 ...