Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 9311
Accepted: 4039

Description

The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and must wander through the maze facing zombies, chainsaw-wielding psychopaths, hippies, and other terrors on their quest
to find the exit.



One popular maze-walking strategy guarantees that the visitor will eventually find the exit. Simply choose either the right or left wall, and follow it. Of course, there's no guarantee which strategy (left or right) will be better, and the path taken is seldom
the most efficient. (It also doesn't work on mazes with exits that are not on the edge; those types of mazes are not represented in this problem.)




As the proprieter of a cornfield that is about to be converted into a maze, you'd like to have a computer program that can determine the left and right-hand paths along with the shortest path so that you can figure out which layout has the best chance of confounding
visitors.

Input

Input to this problem will begin with a line containing a single integer n indicating the number of mazes. Each maze will consist of one line with a width, w, and height, h (3 <= w, h <= 40), followed
by h lines of w characters each that represent the maze layout. Walls are represented by hash marks ('#'), empty space by periods ('.'), the start by an 'S' and the exit by an 'E'.




Exactly one 'S' and one 'E' will be present in the maze, and they will always be located along one of the maze edges and never in a corner. The maze will be fully enclosed by walls ('#'), with the only openings being the 'S' and 'E'. The 'S' and 'E' will also
be separated by at least one wall ('#').



You may assume that the maze exit is always reachable from the start point.

Output

For each maze in the input, output on a single line the number of (not necessarily unique) squares that a person would visit (including the 'S' and 'E') for (in order) the left, right, and shortest
paths, separated by a single space each. Movement from one square to another is only allowed in the horizontal or vertical direction; movement along the diagonals is not allowed.

Sample Input

2
8 8
########
#......#
#.####.#
#.####.#
#.####.#
#.####.#
#...#..#
#S#E####
9 5
#########
#.#.#.#.#
S.......E
#.#.#.#.#
#########

Sample Output

37 5 5
17 17 9

1.题意:有一个迷宫,#代表墙,..代表能走。S是起点。E是终点W为宽。列数H为高。

先输出左转优先时。从S到E的步数

再输出右转优先时,从S到E的步数

最后输出S到E的最短步数

自己写的有非常多问题。。

后面我发现别人都是用什么数学方法来确定向左还是向右。。我立即就Orz了。

那些人里面。写的最好的就是这个了点击打开链接

。尼玛,又看了结题报告。。╮(╯▽╰)╭。。

简直丧心病狂。。剁手。。。好吧。。题外话就不多说了。。。其它的他都说的非常具体了。

。。我也就

打打酱油吧。。。。。。。。

Orz。。。。。。

。。。


#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector> using namespace std; const int N = 105; char map[N][N];
int vist[N][N]; struct node
{
int x;
int y;
int num;
};
queue<node>q;
node first; int dx[4]={1,-1,0,0};
int dy[4]={0,0,-1,1};
int fx[]= {0,1,0,-1};
int fy[]= {1,0,-1,0};
int fr[]= {1,0,3,2};
int fl[]= {3,0,1,2};
int ans;
int t, n, m;
int xx, yy;
int d; void L_dfs(int x, int y, int d) //靠左墙
{
ans++;
if( map[x][y] == 'E' )
{
printf( "%d", ans );
ans = 0; //记得初始
return ;
}
for(int i=0; i<4; i++)
{
int j = ( d + fl[i] ) % 4;
xx = x + fx[j];
yy = y + fy[j];
if(xx>=1 && xx<=n && yy>=1 && yy<=m && map[xx][yy]!='#')
{
L_dfs(xx, yy, j);
return ; //少了直接爆掉
}
} } void R_dfs(int x, int y, int d) //向右
{
ans++;
if( map[x][y] == 'E' )
{
printf(" %d", ans );
ans = 0;
return ;
}
for(int i=0; i<4; i++)
{
int j= ( d + fr[i] ) % 4;
xx = x + fx[j];
yy = y + fy[j];
if(xx>=1 && xx<=n && yy>=1 && yy<=m && map[xx][yy]!='#')
{
R_dfs(xx, yy, j);
return ;
}
} } void S_bfs() //最短路径
{
memset( vist, false, sizeof( vist ) );
vist[first.x][first.y] = true;
while( !q.empty() )
{
node temp = q.front();
q.pop();
if( map[temp.x][temp.y]=='E' )
{
printf(" %d\n", temp.num+1);
break;
}
for(int i=0; i<4; i++)
{ xx = temp.x + dx[i];
yy = temp.y + dy[i];
if( xx>=1 && xx<=n &&yy>=1 &&yy<=m && !vist[xx][yy] && map[xx][yy]!='#' )
{
node next;
next.x = xx;
next.y = yy;
next.num = temp.num + 1;
vist[xx][yy] = true;
q.push( next );
}
}
}
} int main()
{
scanf("%d\n", &t);
while( t-- )
{
memset( vist, false, sizeof( vist ) );
while( !q.empty() ) q.pop();
scanf("%d%d", &m, &n);
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
cin>>map[i][j];
if( map[i][j]=='S' )
{
first.x = i;
first.y = j;
}
}
first.num = 0; ans = 0;
vist[first.x][first.y] = true;
q.push( first );
if(first.x==1) d=0;
if(first.x==n) d=2;
if(first.y==1) d=1;
if(first.y==m) d=3;
L_dfs( first.x, first.y, d);
R_dfs( first.x, first.y, d);
S_bfs();
} return 0;
}

POJ 3083:Children of the Candy Corn(DFS+BFS)的更多相关文章

  1. POJ 3083 -- Children of the Candy Corn(DFS+BFS)TLE

    POJ 3083 -- Children of the Candy Corn(DFS+BFS) 题意: 给定一个迷宫,S是起点,E是终点,#是墙不可走,.可以走 1)先输出左转优先时,从S到E的步数 ...

  2. poj 3083 Children of the Candy Corn(DFS+BFS)

    做了1天,总是各种错误,很无语 最后还是参考大神的方法 题目:http://poj.org/problem?id=3083 题意:从s到e找分别按照左侧优先和右侧优先的最短路径,和实际的最短路径 DF ...

  3. POJ 3083:Children of the Candy Corn

    Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11015   Acce ...

  4. poj 3083 Children of the Candy Corn (广搜,模拟,简单)

    题目 靠墙走用 模拟,我写的是靠左走,因为靠右走相当于 靠左走从终点走到起点. 最短路径 用bfs. #define _CRT_SECURE_NO_WARNINGS #include<stdio ...

  5. POJ3083 Children of the Candy Corn(搜索)

    题目链接. 题意: 先沿着左边的墙从 S 一直走,求到达 E 的步数. 再沿着右边的墙从 S 一直走,求到达 E 的步数. 最后求最短路. 分析: 最短路好办,关键是沿着墙走不太好想. 但只要弄懂如何 ...

  6. POJ3083 Children of the Candy Corn(Bfs + Dfs)

    题意:给一个w*h的迷宫,其中矩阵里面 S是起点,E是终点,“#”不可走,“.”可走,而且,S.E都只会在边界并且,不会在角落,例如(0,0),输出的话,每组数据就输出三个整数,第一个整数,指的是,以 ...

  7. POJ-3083 Children of the Candy Corn (BFS+DFS)

    Description The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and mus ...

  8. POJ 2739:Sum of Consecutive Prime Numbers(Two pointers)

    [题目链接] http://poj.org/problem?id=2739 [题目大意] 求出一个数能被拆分为相邻素数相加的种类 [题解] 将素数筛出到一个数组,题目转化为求区段和等于某数的次数,尺取 ...

  9. 题解报告:hdu 2612 Find a way(双bfs)

    Problem Description Pass a year learning in Hangzhou, yifenfei arrival hometown Ningbo at finally. L ...

随机推荐

  1. Android开发工具--AndroidStudio

    1.Android studio更改快捷键File->setttings  搜索key map就可以更改成自己喜欢的会计键风格了

  2. celery-分布式任务队列-原理

    # 转自:https://www.cnblogs.com/forward-wang/p/5970806.html 在学习Celery之前,我先简单的去了解了一下什么是生产者消费者模式. 生产者消费者模 ...

  3. 【python】正则表达式相关

    注意:Python3.X 的print要有括号, Python 2.x的不需要 放上学习时写的例子: import re m = re.match(r'(\w+) (\w+)(?P<sign&g ...

  4. unity学习笔记1--Space Shooter

    其实我一直觉得我是个模棱两可的人,就计算机这块来说,自己还是想制作游戏什么的,但是又得考虑到现实就业的问题,所以现在自己主要在学安卓和javaweb.现在大概是心血来潮吧,突然想追逐下自己的理想,虽然 ...

  5. yii2框架获取刚插入数据库的id (原创)

    $insert_id = $UserModel->attributes['id'];

  6. (九)expect批量公钥推送

    (1)expect实现ssh非交互登录 注意:注释不能出现这脚本里面 spawn表示开启一个会话 \r:表示回车,exp_continue :表示没有出现这样,继续往下执行 interact :停留在 ...

  7. Mathematica作图

    第2讲 在Mathematica中作图    一个较强的符号计算系统均有很好的绘图功能,Mathematica也不例外,Mathematica 拥有非常强大的绘图功能.并且提供了一大批基本数学函数的图 ...

  8. codeforces Round 442 B Nikita and string【前缀和+暴力枚举分界点/线性DP】

    B. Nikita and string time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  9. 洛谷P3929 SAC E#1 - 一道神题 Sequence1【枚举】

    题目描述 小强很喜欢数列.有一天,他心血来潮,写下了一个数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种:波动数列. 一个长度为n的波动数列满足对于任何i(1 <= i < n),均有: ...

  10. [BZOJ 1794] Linear Garden

    Link: BZOJ 1794 传送门 Solution: IOI2008官方题解:传送门 要求序号,其实就是算字典序比其小的序列个数 从而使用数位$dp$的思想来解题,关键在于维护序列要$balan ...