题目地址:http://poj.org/problem?id=1276

Description

A Bank plans to install a machine for cash withdrawal. The machine is able to deliver appropriate @ bills for a requested cash amount. The machine uses exactly N distinct bill denominations, say Dk, k=1,N, and for each denomination
Dk the machine has a supply of nk bills. For example,



N=3, n1=10, D1=100, n2=4, D2=50, n3=5, D3=10



means the machine has a supply of 10 bills of @100 each, 4 bills of @50 each, and 5 bills of @10 each.




Call cash the requested amount of cash the machine should deliver and write a program that computes the maximum amount of cash less than or equal to cash that can be effectively delivered according to the available bill supply of the machine.




Notes:

@ is the symbol of the currency delivered by the machine. For instance, @ may stand for dollar, euro, pound etc.

Input

The program input is from standard input. Each data set in the input stands for a particular transaction and has the format:



cash N n1 D1 n2 D2 ... nN DN



where 0 <= cash <= 100000 is the amount of cash requested, 0 <=N <= 10 is the number of bill denominations and 0 <= nk <= 1000 is the number of available bills for the Dk denomination, 1 <= Dk <= 1000, k=1,N. White spaces can occur freely between the numbers
in the input. The input data are correct.

Output

For each set of data the program prints the result to the standard output on a separate line as shown in the examples below.

Sample Input

735 3  4 125  6 5  3 350
633 4 500 30 6 100 1 5 0 1
735 0
0 3 10 100 10 50 10 10

Sample Output

735
630
0
0

#include <stdio.h>
#include <string.h> #define MAX 100001
#define MAXN 11
#define Max(a, b) (a) > (b) ? (a) : (b) int cash;
int num[MAXN];
int deno[MAXN];
int dp[MAX]; void ZeroOnePack (int deno){
int i;
for (i=cash; i>=deno; --i)
dp[i] = Max(dp[i], dp[i-deno] + deno);
} void CompletePack (int deno){
int i;
for (i=deno; i<=cash; ++i)
dp[i] = Max(dp[i], dp[i-deno] + deno);
} void MultiplePack (int deno, int num){
if (deno * num >= cash)
CompletePack (deno);
else{
int k = 1;
while (k < num){
ZeroOnePack (deno * k);
num -= k;
k *= 2;
}
ZeroOnePack (deno * num);
}
} int main(void){
int N;
int i; while (scanf ("%d%d", &cash, &N) != EOF){
for (i=1; i<=N; ++i){
scanf ("%d%d", &num[i], &deno[i]);
}
memset (dp, 0, sizeof(dp));
for (i=1; i<=N; ++i){
MultiplePack (deno[i], num[i]);
} printf ("%d\n", dp[cash]);
} return 0;
}

参考资料:背包问题九讲

POJ 1276 Cash Machine -- 动态规划(背包问题)的更多相关文章

  1. Poj 1276 Cash Machine 多重背包

    Cash Machine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26172   Accepted: 9238 Des ...

  2. POJ 1276 Cash Machine(单调队列优化多重背包)

    Cash Machine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 38986   Accepted: 14186 De ...

  3. poj 1276 Cash Machine(多重背包)

    Cash Machine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33444   Accepted: 12106 De ...

  4. POJ 1276 Cash Machine

    Cash Machine Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24213 Accepted: 8476 Descrip ...

  5. 【转载】poj 1276 Cash Machine 【凑钱数的问题】【枚举思路 或者 多重背包解决】

    转载地址:http://m.blog.csdn.net/blog/u010489766/9229011 题目链接:http://poj.org/problem?id=1276 题意:机器里面共有n种面 ...

  6. [poj 1276] Cash Machine 多重背包及优化

    Description A Bank plans to install a machine for cash withdrawal. The machine is able to deliver ap ...

  7. POJ 1276 Cash Machine(多重背包的二进制优化)

    题目网址:http://poj.org/problem?id=1276 思路: 很明显是多重背包,把总金额看作是背包的容量. 刚开始是想把单个金额当做一个物品,用三层循环来 转换成01背包来做.T了… ...

  8. POJ 1276 Cash Machine 【DP】

    多重背包的模型,但一开始直接将N个物品一个一个拆,拆成01背包竟然T了!!好吧OI过后多久没看过背包问题了,翻出背包九讲看下才发现还有二进制优化一说........就是将n个物品拆成系数:1,2,4, ...

  9. POJ 1276 Cash Machine(完全背包模板题)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44409   Accepted: 16184 Description A B ...

随机推荐

  1. 利用putty软件连接虚拟机中linux操作系统

    http://jingyan.baidu.com/article/9c69d48fbefe6613c8024e6a.html 大家在使用虚拟的过程中有时候会感觉切换操作系统很不方便,那么有什么方法可以 ...

  2. [C语言(VC)] 打造自己的键盘记录器 (zaroty)

    说起键盘记录,想必很多朋友都用过网上流传的一些键盘记录软件吧,但是有没有想过自己写一个呢?也许你会想:会不会很复杂啊?我可以很负责的告诉你,写键盘记录是很简单的.你所需要的仅仅是懂得一些C语言的DLL ...

  3. ios基础知识

    1获取系统语言设置 NSUserDefaults *userDefault = [NSUserDefaults standardUserDefaults]; NSArray *languages = ...

  4. [React Native] Build a Separator UI component

    In this lesson we'll create a reusable React Native separator component which manages it's own style ...

  5. [Python]linux自己定义Python脚本命令

    在window下写好的程序配置到Linux上,要实现随意文件夹下的命令调用. 因为初学Linux,这里从文件传输等最主要的方法入手,记录配置的过程中遇到的各种问题. 连接远端server 这里使用pu ...

  6. eclipse+ADT 进行android应用签名详解

    http://jojol-zhou.iteye.com/blog/719428 1.Eclipse工程中右键工程,弹出选项中选择 android工具-生成签名应用包: 2.选择需要打包的android ...

  7. Android Sqlite 导入CSV文件 .

    http://blog.csdn.net/johnnycode/article/details/7413111 今天遇到 Oracle 导出的12万条CSV格式数据导入 Android Sqlite ...

  8. Android利用Looper在子线程中改变UI

    MainActivity如下: package cn.testlooper; import android.app.Activity; import android.os.Bundle; import ...

  9. iOS开发中图片方向的获取与更改

    iOS开发中 再用到照片的时候  或多或少遇到过这样的问题  就是我想用的照片有横着拍的有竖着排的  所以导致我选取图片后的效果也横七竖八的   显示效果不好 比如: 图中红圈选中的图片选取的是横着拍 ...

  10. axel源码学习(0)——程序逻辑

    axel简介 axel是一个命令行下的轻量级http/ftp 下载加速工具,支持多线程下载和断点续传,支持从多个镜像下载同一文件. axel的用法如下: 图 0.1 axel usage axel 粗 ...