Problem Portal

Portal1: Luogu

Description

如题,已知一棵包含\(N\)个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:

操作\(1\): 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上\(z\);

操作\(2\): 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和;

操作\(3\): 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上\(z\);

操作\(4\): 格式: 4 x 表示求以x为根节点的子树内所有节点值之和。

Input

第一行包含\(4\)个正整数\(N\)、\(M\)、\(R\)、\(P\),分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。

接下来一行包含\(N\)个非负整数,分别依次表示各个节点上初始的数值。

接下来\(N - 1\)行每行包含两个整数\(x\)、\(y\),表示点\(x\)和点\(y\)之间连有一条边(保证无环且连通)

接下来\(M\)行每行包含若干个正整数,每行表示一个操作,格式如下:

操作\(1\): 1 x y z

操作\(2\): 2 x y

操作\(3\): 3 x z

操作\(4\): 4 x

Output

输出包含若干行,分别依次表示每个操作\(2\)或操作\(4\)所得的结果(对\(P\)取模)。

Sample Input

5 5 2 24
7 3 7 8 0
1 2
1 5
3 1
4 1
3 4 2
3 2 2
4 5
1 5 1 3
2 1 3

Sample Output

2
21

Solution

模板树链剖分题。

一些概念:

  • 重儿子:在每一个非叶子结点的儿子中,以那个儿子结点为根的子树的结点数最多的儿子为该结点的重儿子;

  • 轻儿子:在非叶子,非重儿子结点;

  • 重边:一个父亲结点连结它的重儿子的边;

  • 轻边:非重边;

  • 重链:相邻重边连起来的,连接一条重儿子结点的链叫重链。

dfs1的功能:

  • 求出每结点的深度;

  • 求出每个结点的父亲节点;

  • 求出每个非叶子结点的子树的大小;

  • 求出每个非叶子结点的重儿子的编号。

dfs2的功能:

  • 处理每条链;

  • 标记每个结点的新编号;

  • 求出每个结点所在链的顶;

  • 把结点的初始值更新到新编号里。

Code

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; const int MAXN = 2000005;
struct EDGE {
int u, v, nxt;
} edge[MAXN];
struct node {
int l, r, w, size, f;
} tree[MAXN];
int n, m, root, mod, cnt, num = 1, a[MAXN], b[MAXN], tot[MAXN], son[MAXN], top[MAXN], idx[MAXN], dep[MAXN], head[MAXN], father[MAXN];
inline void addedge(int u, int v) {
edge[num].u = u; edge[num].v = v; edge[num].nxt = head[u]; head[u] = num++;
}
//dep[i]表示i结点的深度
//father[i]表示i结点的父亲结点
//son[]表示重儿子的编号
inline int dfs1(int now, int f, int deep) {
dep[now] = deep;
father[now] = f;
tot[now] = 1;
int Maxson = -1;
for (int i = head[now]; ~i; i = edge[i].nxt) {
if (edge[i].v == f) continue;
tot[now] += dfs1(edge[i].v, now, deep + 1);
if (tot[edge[i].v] > Maxson) {
Maxson = tot[edge[i].v];
son[now] = edge[i].v;
}
}
return tot[now];
}
inline void dfs2(int now, int topf) {
idx[now] = ++cnt;
a[cnt] = b[now];
top[now] = topf;
if (!son[now]) return ;
dfs2(son[now], topf);
for (int i = head[now]; ~i; i = edge[i].nxt)
if (!idx[edge[i].v]) dfs2(edge[i].v, edge[i].v);
}
inline void pushup(int root) {
tree[root].w = (tree[root << 1].w + tree[root << 1 | 1].w + mod) % mod;
}
inline void build(int root, int l, int r) {
tree[root].l = l; tree[root].r = r; tree[root].size = r - l + 1;
if (l == r) {
tree[root].w = a[l];
return ;
}
int mid = l + r >> 1;
build(root << 1, l, mid);
build(root << 1 | 1, mid + 1, r);
pushup(root);
}
inline void pushdown(int root) {
if (!tree[root].f) return ;
tree[root << 1].w = (tree[root << 1].w + tree[root << 1].size * tree[root].f) % mod;
tree[root << 1 | 1].w = (tree[root << 1 | 1].w + tree[root << 1 | 1].size * tree[root].f) % mod;
tree[root << 1].f = (tree[root << 1].f + tree[root].f) % mod;
tree[root << 1 | 1].f = (tree[root << 1 | 1].f + tree[root].f) % mod;
tree[root].f = 0;
}
inline void update_add(int root, int ansl, int ansr, int val) {
if (ansl <= tree[root].l && tree[root].r <= ansr) {
tree[root].w += tree[root].size * val;
tree[root].f += val;
return ;
}
pushdown(root);
int mid = tree[root].l + tree[root].r >> 1;
if (ansl <= mid) update_add(root << 1, ansl, ansr, val);
if (ansr > mid) update_add(root << 1 | 1, ansl, ansr, val);
pushup(root);
}
//线段树操作
inline void tree_add(int x, int y, int val) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) swap(x, y);
update_add(1, idx[top[x]], idx[x], val);
x = father[top[x]];
}
if (dep[x] > dep[y]) swap(x, y);
update_add(1, idx[x], idx[y], val);
}
inline int query_sum(int root, int ansl, int ansr) {
int ret = 0;
if (ansl <= tree[root].l && tree[root].r <= ansr) return tree[root].w;
pushdown(root);
int mid = tree[root].l + tree[root].r >> 1;
if (ansl <= mid) ret = (ret + query_sum(root << 1, ansl, ansr)) % mod;
if (ansr > mid) ret = (ret + query_sum(root << 1 | 1, ansl, ansr)) % mod;
return ret;
}
inline void tree_sum(int x, int y) {
int ret = 0;
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) swap(x, y);
ret = (ret + query_sum(1, idx[top[x]], idx[x])) % mod;
x = father[top[x]];
}
if (dep[x] > dep[y]) swap(x, y);
ret = (ret + query_sum(1, idx[x], idx[y])) % mod;
printf("%d\n", ret);
}
int main() {
memset(head, -1, sizeof(head));
scanf("%d%d%d%d", &n, &m, &root, &mod);
for (int i = 1; i <= n; i++)
scanf("%d", &b[i]);
for (int i = 1; i < n; i++) {
int x, y;
scanf("%d%d", &x, &y);
addedge(x, y);
addedge(y, x);
}
dfs1(root, 0, 1);
dfs2(root, root);
build(1, 1, n);
while (m--) {
int opt, x, y, val;
scanf("%d", &opt);
if (opt == 1) {
scanf("%d%d%d", &x, &y, &val);
val %= mod;
tree_add(x, y, val);
} else
if (opt == 2) {
scanf("%d%d", &x, &y);
tree_sum(x, y);
} else
if (opt == 3) {
scanf("%d%d", &x, &val);
update_add(1, idx[x], idx[x] + tot[x] - 1, val % mod);
} else {
scanf("%d", &x);
printf("%d\n", query_sum(1, idx[x], idx[x] + tot[x] - 1));
}
}
return 0;
}

『题解』洛谷P3384 【模板】树链剖分的更多相关文章

  1. [洛谷P3384] [模板] 树链剖分

    题目传送门 显然是一道模板题. 然而索引出现了错误,狂wa不止. 感谢神犇Dr_J指正.%%%orz. 建线段树的时候,第44行. 把sum[p]=bv[pos[l]]%mod;打成了sum[p]=b ...

  2. 『题解』洛谷P1063 能量项链

    原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...

  3. [luogu P3384] [模板]树链剖分

    [luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...

  4. 洛谷P3979 遥远的国度 树链剖分+分类讨论

    题意:给出一棵树,这棵树每个点有权值,然后有3种操作.操作一:修改树根为rt,操作二:修改u到v路径上点权值为w,操作三:询问以rt为根x子树的最小权值. 解法:如果没有修改树根操作那么这题就是树链剖 ...

  5. 洛谷 P4114 Qtree1 树链剖分

    目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 说明 思路 Change Query AC代码 总结 题面 题目链接 P4114 Qt ...

  6. 『题解』洛谷P3376 【模板】网络最大流

    Problem Portal Portal1:Luogu Description 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. Input 第一行包含四个正整数\(N,M,S,T\),分 ...

  7. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  8. 『题解』洛谷P2357 守墓人

    Portal Portal1: Luogu Description 在一个荒凉的墓地上有一个令人尊敬的守墓人,他看守的墓地从来没有被盗过, 所以人们很放心的把自己的先人的墓安顿在他那守墓人能看好这片墓 ...

  9. 『题解』洛谷P1993 小K的农场

    更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...

随机推荐

  1. nginx搭建web服务器

    现在有如此众多web服务器,我觉得nginx服务器一个很重要的优势就是它能在支持高并发请求的同时保持高效的服务,接下来我将搭建一个简单的web服务器. 1.编写自己的网页 在nginx目录下新建文件夹 ...

  2. Java中Integer与int对比的一些坑

    Integer与int类型的关系 Integer是int的包装类,int的默认值是0,而Integer的默认值是null(我们经常在代码中使用的Integer.valueOf() 和xx.intVal ...

  3. redis缓存+session 实现单点登录

    一.单点登录介绍 单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系 ...

  4. windows上gedit 安装

    1. 用浏览器打开https://wiki.gnome.org/Apps/Gedit 下载并安装 gedit 文本编辑器.这个操作无需管理员权限. 2. 把 gedit 放到桌面或者快速启动栏,这样你 ...

  5. ABAP实现Blowfish加密算法

    看到SAP社区中有人问是否存在ABAP实现的Blowfish加密算法,无人回答.于是动手实现了一个blowfish-abap.通过blowfish-abap可以在SAP系统中使用Blowfish对数据 ...

  6. Windows系统调用中API从3环到0环(上)

    Windows内核分析索引目录:https://www.cnblogs.com/onetrainee/p/11675224.html Windows系统调用中API从3环到0环(上) 如果对API在三 ...

  7. 实验吧之【who are you?】(时间盲注)

    地址:http://ctf5.shiyanbar.com/web/wonderkun/index.php 这道题点开看见your ip is :xxx.xxx.xx.xxx 试了一些 最后发现是XFF ...

  8. opencv::处理边缘

    卷积边界问题 图像卷积的时候边界像素,不能被卷积操作,原因在于边界像素没有完全跟kernel重叠,所以当3x3滤波时候有1个像素的边缘没有被处理,5x5滤波的时候有2个像素的边缘没有被处理. 处理边缘 ...

  9. 00jmeter安装相关

    1.官网下载安装包:http://jmeter.apache.org/ 下载最新版本: 2.将下载后的zip文件解压 3. jdk与jmeter的环境变量配置(以下变量如果没有则新建,如果已存在则直接 ...

  10. git的使用和常用命令

    git介绍 git 是一个免费开源的分布式版本控制系统 git可以实现各个版本之间的来回穿梭 git可以远程托管代码 git可以完成团队合作 workspace --add--> index - ...