python  数学工具包括:

1.函数的逼近

  1.1.回归

  1.2.插值

2.凸优化
3.积分
4.符号数学

本文介绍函数的逼近的回归方法

1.作为基函数的单项式

对函数 的拟合

首先定义函数并且可视化

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd def f(x):
return np.sin(x)+0.5*x x=np.linspace(-2*np.pi,2*np.pi,50)
plt.plot(x,f(x),'b')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)

 

先用一次函数拟合

reg=np.polyfit(x,f(x),deg=1)
ry=np.polyval(reg,x)
plt.plot(x,f(x),'b',label='f(x)')
plt.grid(True)
plt.plot(x,ry,'r.',label='reg')
plt.legend(loc=0)

  

再用高次函数进行拟合

reg=np.polyfit(x,f(x),deg=16)
ry=np.polyval(reg,x)
plt.plot(x,f(x),'b',label='f(x)')
plt.grid(True)
plt.plot(x,ry,'r.',label='reg')
plt.legend(loc=0)

  

拟合效果的检查

print('平均误差:',sum((ry-f(x))**2)/len(x))

平均误差: 3.16518401761e-13

  

np.allclose(ry,f(x))

True

 

2.单独的基函数

首先常见一个空的矩阵,然后为任一行添加函数

mat=np.zeros((3+1,len(x)))
mat[3,:]=x**3
mat[2,:]=x**2
mat[1,:]=x
mat[0,:]=1 reg=np.linalg.lstsq(mat.T,f(x)) #输出系数
reg[0]
array([  1.52685368e-14,   5.62777448e-01,  -1.11022302e-15,
-5.43553615e-03])

  

#输出图形
ry=np.dot(reg[0],mat) plt.plot(x,f(x),'b',label='f(x)')
plt.plot(x,ry,'r.',label='reg')
plt.grid(True)
plt.legend(loc=0)

  

对每行的基函数进行变换:

mat=np.zeros((3+1,len(x)))
mat[3,:]=np.sin(x)
mat[2,:]=x**2
mat[1,:]=x
mat[0,:]=1 reg=np.linalg.lstsq(mat.T,f(x)) ry=np.dot(reg[0],mat) plt.plot(x,f(x),'b',label='f(x)')
plt.plot(x,ry,'r.',label='reg')
plt.grid(True)
plt.legend(loc=0)

  

3.多维情形

def fm(x,y):
return np.sin(x) + 0.25 * x + np.sqrt(y) + 0.05**y*2 x = np.linspace(0, 10, 20)
y = np.linspace(0, 10, 20)
x, y = np. meshgrid( x, y) Z = fm(x,y)
x = x.flatten()
y = x. flatten() import statsmodels.api as sm matrix=np.zeros((len(x),6+1)) matrix[:,6] = np.sqrt(y)
matrix[:,5] = np.sin(x)
matrix[:,4] = y**2
matrix[:,3] = y**2
matrix[:,2] = y
matrix[:,1] = x
matrix[:,0] = 1 res=sm.OLS(fm(x,y),matrix).fit() print(res.summary().as_text())

  

                         OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.999
Model: OLS Adj. R-squared: 0.999
Method: Least Squares F-statistic: 9.605e+04
Date: Tue, 31 Jul 2018 Prob (F-statistic): 0.00
Time: 10:51:36 Log-Likelihood: 661.47
No. Observations: 400 AIC: -1313.
Df Residuals: 395 BIC: -1293.
Df Model: 4
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 1.9548 0.010 193.732 0.000 1.935 1.975
x1 0.5891 0.005 111.546 0.000 0.579 0.600
x2 0.5891 0.005 111.546 0.000 0.579 0.600
x3 -0.0150 0.000 -54.014 0.000 -0.016 -0.014
x4 -0.0150 0.000 -54.014 0.000 -0.016 -0.014
x5 0.9533 0.004 251.168 0.000 0.946 0.961
x6 -1.6190 0.020 -79.979 0.000 -1.659 -1.579
==============================================================================
Omnibus: 4.352 Durbin-Watson: 0.880
Prob(Omnibus): 0.113 Jarque-Bera (JB): 4.214
Skew: -0.208 Prob(JB): 0.122
Kurtosis: 2.717 Cond. No. 4.93e+17
==============================================================================

 

python数学工具(一)的更多相关文章

  1. 你不得不看的Python机器学习工具

    IEEE Spectrum排行榜第一,Skill UP排名第一的开发工具,Stack Overflow年度调查中程序员最感兴趣的选择,Stack Overflow 6月份访问量最多的编程语言..... ...

  2. QuantLib 金融计算——数学工具之数值积分

    目录 QuantLib 金融计算--数学工具之数值积分 概述 常见积分方法 高斯积分 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之数值积分 载入模 ...

  3. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  4. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  5. Python开发工具PyCharm个性化设置(图解)

    Python开发工具PyCharm个性化设置,包括设置默认PyCharm解析器.设置缩进符为制表符.设置IDE皮肤主题等,大家参考使用吧. JetBrains PyCharm Pro 4.5.3 中文 ...

  6. Python数学函数

    1.Python数学函数 1.abs(x):取绝对值,内建函数 2.math.ceil(x):向上取整,在math模块中 3.cmp(x,y):如果 x < y ,返回-1:如果 x == y ...

  7. 数学工具之mathgv

    做科研时,数学必不可少,有时要看一个方程的很多特性,当然,自己了解的当然好,可要是碰到复杂的,一下子是看不出来,这个时候借助数学工具可以很好地画出来,这里介绍mathgv这个软件. 此软件是开源的,使 ...

  8. 下破解安装Python开发工具WingIDE4.1

    步骤: 1.将系统时间调整到一个月之前,然后执行安装. 可以使用date命令调整系统时间,如:date -s '2012-08-14 10:00:00' 2.安装成功后,打开程序,按照提示信息,申请一 ...

  9. Python小工具--删除svn文件

    有的时候我们需要删除项目下的svn相关文件,但是SVN会在所有的目录下都创建隐藏文件.svn,手工一个个目录查找然后删除显然比较麻烦.所以这里提供了一个Python小工具用于批量删除svn的相关文件: ...

随机推荐

  1. thinkphp volist标签中加if判断的写法

    <if condition="$vo['devstatus'] eq 1">在线<else /> 离线</if> IF标签用法 <if c ...

  2. Java类/接口的API

    本章节收集的类/接口API有: Object类,枚举,包装类,接口Comparable,类Arrays,异常, Object类 public String toString(): [把一个对象的信息用 ...

  3. Mysql主从同步的实现原理与配置实战

    1.什么是mysql主从同步? 当master(主)库的数据发生变化的时候,变化会实时的同步到slave(从)库. 2.主从同步有什么好处? 水平扩展数据库的负载能力. 容错,高可用.Failover ...

  4. 南开大学校徽及手写字的Tikz源码

    话不多说,直接上内容. % ---------------------------------- % !TeX enginee = pdfLaTeX/XeLaTeX % !TeX encoding = ...

  5. 使用 layUI做一些简单的表单验证

    使用 layUI做一些简单的表单验证 <form method="post" class="layui-form" > <input name ...

  6. pat 1149 Dangerous Goods Packaging(25 分)

    1149 Dangerous Goods Packaging(25 分) When shipping goods with containers, we have to be careful not ...

  7. 【故障公告】数据库服务器 CPU 近 100% 引发的故障(源于 .NET Core 3.0 的一个 bug)

    非常抱歉,这次故障给您带来麻烦了,请您谅解. 今天早上 10:54 左右,我们所使用的数据库服务(阿里云 RDS 实例 SQL Server 2016 标准版)CPU 突然飙升至 90% 以上,应用日 ...

  8. tomcat-9.0.20部署后输出窗口乱码解决方案

    问题:启动tomcat的时候,窗口乱码,默认都是UTF-8的,但是控制台是GBK的,要保持一致 可以通过控制台查看本机的编码: : 936  代表  GB2312 解决办法:打开tomcat目录下的c ...

  9. 扛把子组20191017-5 alpha week 2/2 Scrum立会报告+燃尽图 04

    此作业要求参见[https://edu.cnblogs.com/campus/nenu/2019fall/homework/9801] 一.小组情况 队名:扛把子 组长:迟俊文 组员:宋晓丽 梁梦瑶 ...

  10. 2019-10-16,sudo提权漏洞(CVE-2019-14287)实现

    sudo是linux系统命令,让普通账号以root身份执行某些命令,比如,安装软件,查看某些配置文件,关机,重启等,如果普通用户需要使用sudo需要修改配置文件,/etc/sudoers,将sudo使 ...