计蒜客16492 building(二分线段树/分块)
题解:
考虑用线段树维护楼的最大值,然后这个问题就很简单了。
每次可以向左二分出比x高的第一个楼a,同理也可以向右二分出另一个楼b,如果a,b都存在,答案就是b-a-1。
注意到二分是可以直接在线段树上进行的,所以复杂度是O(nlogn)。
当然这里是用分块做的,更暴力一些。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 1e5 + , maxN = ;
int B[maxN], Tag[maxN];
int a[maxn];
int n, m, N, L;
void Update(int i){
if(Tag[i] == -) return;
int bl = i*L, br = min(n, (i+)*L-);
for(int j = bl; j <= br; j++) a[j] = Tag[i];
Tag[i] = -;
}
void Change(int l, int r, int v){
for(int i = ; i < N; i++){
int bl = i*L, br = min(n, (i+)*L-);
if(l <= bl && br <= r){
Tag[i] = v;
B[i] = v;
} else if(bl <= l && l <= br && bl <= r && r <= br){
Update(i);
B[i] = max(B[i], v);
for(int j = l; j <= r; j++) a[j] = v;
} else if(bl <= l && l <= br){
Update(i);
B[i] = max(B[i], v);
for(int j = l; j <= br; j++) a[j] = v;
} else if(bl <= r && r <= br){
Update(i);
B[i] = max(B[i], v);
for(int j = bl; j <= r; j++) a[j] = v;
}
}
} int Findl(int x){
int bi = x/L;
int bl = bi*L, br = min(n, (bi+)*L-);
Update(bi);
for(int i = x-; i >= bl; i--){
if(a[i] > a[x]) return i;
}
for(int i = bi-; i >= ; i--){
if(B[i] > a[x]){
bl = i*L, br = min(n, (i+)*L-);
Update(i);
for(int j = br; j >= bl; j--)
if(a[j] > a[x]) return j;
}
}
return -;
} int Findr(int x){
int bi = x/L;
int bl = bi*L, br = min(n, (bi+)*L-);
Update(bi);
for(int i = x+; i <= br; i++){
if(a[i] > a[x]) return i;
}
for(int i = bi+; i < N; i++){
if(B[i] > a[x]){
bl = i*L, br = min(n, (i+)*L-);
Update(i);
for(int j = bl; j <= br; j++)
if(a[j] > a[x]) return j;
}
}
return -;
} int main()
{
int x, y, z;
cin>>n;
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
}
L = sqrt(n+0.5);
N = n/L + ;
for(int i = ; i < N; i++) Tag[i] = -;
for(int i = ; i <= n; i++){
B[i/L] = max(B[i/L], a[i]);
}
cin>>m;
for(int i = ; i <= m; i++){
scanf("%d", &x);
if(x == ){
scanf("%d %d %d", &x, &y, &z);
Change(x, y, z);
} else {
scanf("%d", &x);
int l = Findl(x), r = Findr(x);
if(l == - || r == -) printf("-1\n");
else printf("%d\n", r-l-);
}
}
}
计蒜客16492 building(二分线段树/分块)的更多相关文章
- 【原创】tyvj1038 忠诚 & 计蒜客 管家的忠诚 & 线段树(单点更新,区间查询)
最简单的线段树之一,中文题目,不翻译.... 注释讲的比较少,这已经是最简单的线段树,如果看不懂真的说明最基础的理论没明白 推荐一篇文章http://www.cnblogs.com/liwenchi/ ...
- [计蒜客T2238]礼物_线段树_归并排序_概率期望
礼物 题目大意: 数据范围: 题解: 这题有意思啊($md$卡常 直接做怎么做? 随便上个什么东西,维护一下矩阵乘和插入,比如说常数还算小的$KD-Tree$(反正我是没见人过过 我们漏掉了一个条件, ...
- 计蒜客 28315.Excellent Engineers-线段树(单点更新、区间最值) (Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 E)
先写这几道题,比赛的时候有事就只签了个到. 题目传送门 E. Excellent Engineers 传送门 这个题的意思就是如果一个人的r1,r2,r3中的某一个比已存在的人中的小,就把这个人添加到 ...
- 计蒜客 38228. Max answer-线段树维护单调栈(The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer 南昌邀请赛网络赛) 2019ICPC南昌邀请赛网络赛
Max answer Alice has a magic array. She suggests that the value of a interval is equal to the sum of ...
- 计蒜客 41391.query-二维偏序+树状数组(预处理出来满足情况的gcd) (The Preliminary Contest for ICPC Asia Xuzhou 2019 I.) 2019年徐州网络赛)
query Given a permutation pp of length nn, you are asked to answer mm queries, each query can be rep ...
- 计蒜客 Prefix Free Code(字典树+树状数组)
Consider n initial strings of lower case letters, where no initial string is a prefix of any other i ...
- [计蒜客] 矿石采集【记搜、Tarjan缩点+期望Dp】
Online Judge:计蒜客信息学3月提高组模拟赛 Label:记搜,TarJan缩点,树状数组,期望Dp 题解 整个题目由毫无关联的两个问题组合成: part1 问题:对于每个询问的起点终点,求 ...
- 计蒜客 NOIP 提高组模拟竞赛第一试 补记
计蒜客 NOIP 提高组模拟竞赛第一试 补记 A. 广场车神 题目大意: 一个\(n\times m(n,m\le2000)\)的网格,初始时位于左下角的\((1,1)\)处,终点在右上角的\((n, ...
- 计蒜客 28449.算个欧拉函数给大家助助兴-大数的因子个数 (HDU5649.DZY Loves Sorting) ( ACM训练联盟周赛 G)
ACM训练联盟周赛 这一场有几个数据结构的题,但是自己太菜,不会树套树,带插入的区间第K小-替罪羊套函数式线段树, 先立个flag,BZOJ3065: 带插入区间K小值 计蒜客 Zeratul与Xor ...
随机推荐
- 如何在linux系统内用openssl 生成 过期的证书
需求:验证过期的证书在系统中不能使用. 问题:如何生成过期的证书呢? 解决方法:1.调整系统时间 2.生成证书 3.验证证书startdate 和 enddate 是否符合你的预期 1.调整系统时间 ...
- JSP/Servlet开发——第二章 JSP数据交互(二)
1. JSP 内置对象 application: ●application 对象类似于系统的 "全局变量", 用于同一个应用内的所有用户之问的数据共享: ●application对 ...
- php数组常用函数总结
数组的创建 $arr1 = [ "姓名" => "张三", "籍贯" => "上海", "年龄&q ...
- 记6种php 加密解密方法
<?php function encryptDecrypt($key, $string, $decrypt){ if($decrypt){ $decrypted = rtrim(mcrypt_d ...
- python-映射·字典
1.创建字典:字典由键值对组成,每个键值对就是字典的一个元素,键值对之间用分号(:)隔开,元素之间用逗号(,)隔开.字典中的键必须是唯一 且不可变得(不可以是列表或者字典).字典中的元素是无序的. d ...
- ruby编码说明
程序编码一般分几种情况: 1.源码文件编码 2.接收外部内容的编码 3.运行环境编码 4.操作系统编码 首先源码文件的编码,可以通过在ruby文件的头部添加一行申明即可,这样所有在源码里面出现的字符都 ...
- linux文件操作篇 (四) 目录操作
#include <sys/stat.h>#include <unistd.h>#include <dirent.h> //创建文件夹 路径 掩码 int mkdi ...
- C++远征之封装篇(下)-学习笔记
C++远征之封装篇(下) c++封装概述 下半篇依然围绕类 & 对象进行展开 将原本学过的简单元素融合成复杂的新知识点. 对象 + 数据成员 = 对象成员(对象作为数据成员) 对象 + 数组 ...
- BootCDNApi使用记录
通过API获取BootCDN所加速的所有前端开源库的基本信息和文件列表 API 将一下API链接中的.min字样去掉后,获取到的JSON格式的返回信息是经过良好的格式化的,便于查看. 所有开源库简要信 ...
- Kubernetes-ELK
ElasticSearch日志搜集查询和展现案例 容器中输出到控制台的日志都会以*-json.log的命名方式存储在/var/lib/container目录之下: Kubernetes采用Fluent ...