瑞丽熵(renyi entropy)
在信息论中,Rényi熵是Hartley熵,Shannon熵,碰撞熵和最小熵的推广。熵能量化了系统的多样性,不确定性或随机性。Rényi熵以AlfrédRényi命名。在分形维数估计的背景下,Rényi熵构成了广义维数概念的基础。
Rényi熵在生态学和统计学中是重要的多样性指标。Rényi熵在量子信息中也很重要,它可以用来衡量纠缠。在Heisenberg XY自旋链模型中,作为α的函数的Rényi熵可以由于它是关于模数群的特定子群的自守函数而被明确地计算。在理论计算机科学中,最小熵用于随机抽取器的情况下。
定义:
含参数α的瑞丽熵其中α≥0和α≠1,被定义为
这里,X是一个具有可能结果的离散随机变量1,2,3,…..,n和相应的概率对于i=1,2,….n,而对数基数为2.如果概率是
对全部i=1,…..,n,那么分配的所有瑞丽熵都是相等的:
一般来说,对于所有的离散随机变量X,是一个带有α的非递增函数。
经常可见瑞丽熵和概率向量的p-范数之间的关系:
在这里,离散的概率分布P=(p1,……..,pn)被解释为一个向量Rn,同时pi≥0和Σpi=1
瑞丽熵中α≥0
特例
哈特利或最大熵:
香农熵:
碰撞熵,有时被称为“Rényi熵”,是指α = 2 的情况,
其中,X和Y ^是独立同分布的。
最小熵:
在极限中 收敛到最小熵
:
参考文献:https://en.wikipedia.org/wiki/R%C3%A9nyi_entropy
瑞丽熵(renyi entropy)的更多相关文章
- 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...
- 交叉熵cross entropy和相对熵(kl散度)
交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...
- 熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)
1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类 ...
- [转]熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)
https://www.cnblogs.com/silent-stranger/p/7987708.html 1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练 ...
- 机器学习之决策树熵&信息增量求解算法实现
此文不对理论做相关阐述,仅涉及代码实现: 1.熵计算公式: P为正例,Q为反例 Entropy(S) = PLog2(P) - QLog2(Q); 2.信息增量计算: Gain(S,Sv) = E ...
- paper 38 :entropy
图像熵计算 真是为了一个简单的基础概念弄的心力交瘁,请教了一下师姐,但是并没有真的理解,师弟我太笨呀~~所以,我又查熵的中文含义和相关的出处!共勉吧~~ 1.信息熵: 利用信息论中信息熵概念,求出任意 ...
- linux内核的熵池
也可以看百度科 Linux内核采用熵来描述数据的随机性.熵(entropy)是描述系统混乱无序程度的物理量,一个系统的熵越大则说明该系统的有序性越差,即不确定性越大.在信息学中,熵被用来表征一个符号或 ...
- JVM上的随机数与熵池策略
在apache-tomcat官方文档:如何让tomcat启动更快里面提到了一些启动时的优化项,其中一项是关于随机数生成时,采用的“熵源”(entropy source)的策略. 他提到tomcat7的 ...
- Maximum Entropy Model(最大熵模型)初理解
0,熵的描述 熵(entropy)指的是体系的混沌的程度(可也理解为一个随机变量的不确定性),它在控制论.概率论.数论.天体物理.生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义, ...
随机推荐
- C语言基础(19)-结构体,联合体,枚举和typedef
一.结构体 1.1 结构体struct定义及初始化 #include <stdio.h> // 这个头文件在系统目录下 #include <stdlib.h> // 使用了sy ...
- Android WebView 常见问题
1.为WebView自定义错误显示界面: /** * 显示自定义错误提示页面,用一个View覆盖在WebView */ protected void showErrorPage() { LinearL ...
- nginx源代码分析--nginx模块解析
nginx的模块很之多.能够觉得全部代码都是以模块的形式组织.这包含核心模块和功能模块,针对不同的应用场合.并不是全部的功能模块都要被用到,附录A给出的是默认configure(即简单的httpser ...
- samba在linux下的配置
Samba配置过程容易遇到的问题 samba的安装很简单,搜索一下都能找到.我主要是记录一上我碰到的问题及解决的办法 第一个问题 防火墙的问题,粗暴的办法是直接把防火墙关掉,合适的做法是把samba用 ...
- python 模块中__all__作用
test.py文件开头写上__all__=[func1,func2] 当其他文件导入 from test import * 只会导出"[func1,func2]"里面的,其他调用 ...
- jvm(12)-java内存模型与线程
[0]README 0.1)本文部分文字描述转自“深入理解jvm”,旨在学习“java内存模型与线程” 的基础知识: [1]概述 1)并发处理的广泛应用是使得 Amdahl 定律代替摩尔定律称为计 ...
- 解决OV系列摄像头寄存器读数据无法收到的问题
最近工作中接了一款OV7725的sensor,由于平台已经接过很多的家的sensor也就没有太当回事.问题出现的很奇怪,再看了 register map后基本确定了要尽心register R/W测试 ...
- C++11写算法之选择排序
选择排序,顾名思义,指从数组后面将最小的值找出来,然后与最前面(指当前位置)值进行交换. 时间复杂度:O(n^2) 空间复杂度:O(1) 此处应用了C++11的auto , lambda , stat ...
- wifidog 认证
首先简介一下什么是Portal认证.Portal认证.通常也会叫Web认证.未认证用户上网时,设备强制用户登录到特定站点,用户能够免费訪问当中的服务.当用户须要使用互联网中的其他信息时,必须在门户站点 ...
- CodeMirror:基于JavaScript的代码编辑器
官方网站定义: http://codemirror.net/ CodeMirror is a versatile text editor implemented in JavaScript for t ...