【动态规划】【最长上升子序列】【贪心】bzoj1046 [HAOI2007]上升序列
nlogn求出最长上升子序列长度。
对每次询问,贪心地回答。设输入为x。当前数a[i]可能成为答案序列中的第k个,则若 f[i]>=x-k && a[i]>ans[k-1] 即可。
f[i]表示以a[i]开头的最长上升子序列长度。
但这个东西难以统计。so 我们将原序列反序,求f[i] 表示以 a[i]为结尾的最长下降子序列长度即可。最后再将f、a reverse一下。
#include<cstdio>
#include<algorithm>
using namespace std;
int a[],n,m,en=,len,last;
int b[];//b[i]:将a翻转后,长度为i的最长下降子序列的末尾
int c[];//c[i]:将a翻转后,以a[i]开头的最长下降子序列的长度
bool cmp(const int &a,const int &b){return a>b;}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[n-i+]);
scanf("%d",&m);
b[]=a[]; c[]=;
for(int i=;i<=n;i++)
{
int *p=lower_bound(b+,b+en+,a[i],cmp);
if(!(*p)) ++en;
*p=a[i];
c[i]=p-b;
}
for(int i=;i<=(n>>);i++) swap(c[i],c[n-i+]),swap(a[i],a[n-i+]);
for(int i=;i<=m;i++)
{
scanf("%d",&len);
if(len>en)
{
puts("Impossible");
continue;
} last=;
for(int j=;j<=n;++j)
if(c[j]>=len&&a[j]>last)
{
printf("%d",last=a[j]);
if(!(--len))
{
puts("");
break;
} putchar(' ');
}
}
return ;
}
【动态规划】【最长上升子序列】【贪心】bzoj1046 [HAOI2007]上升序列的更多相关文章
- 动态规划——最长上升子序列LIS及模板
LIS定义 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1 ...
- 动态规划———最长公共子序列(LCS)
最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/ ...
- 动态规划-最长上升子序列(LIS)
时间复杂度为〇(nlogn)的算法,下面就来看看. 我们再举一个例子:有以下序列A[]=3 1 2 6 4 5 10 7,求LIS长度. 我们定义一个B[i]来储存可能的排序序列,len为LIS长度. ...
- 动态规划----最长递增子序列问题(LIS)
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...
- 动态规划 - 最长公共子序列(LCS)
最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)
最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n). 具体分析参考:http://b ...
- 算法导论-动态规划(最长公共子序列问题LCS)-C++实现
首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2 ...
- 动态规划---最长公共子序列 hdu1159
hdu1159 题目要求两个字符串最长公共子序列, 状态转换方程 f[i][j]=f[i-1][j-1]+1; a[i]=b[j]时 f[i][j]=MAX{f[i-1][j],f[i][j-1] ...
随机推荐
- HDU1859 最小长方形 (水
最小长方形 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 把java的class文件打成jar包的步骤
现在我的文件夹的目录在: C:\Users\linsenq\Desktop\cglibjar 我要把位于这个目录下的所有文件夹以及这个文件夹下的.class文件打成jar包 第一步:用win+R 打开 ...
- Maven环境搭建、调试、打包
1.配置Maven环境 将下载文件解压,然后设置maven环境 新建环境变量M2_HOME 变量名:M2_HOME 变量值:F:\maven\apache-maven-3.0.3 追加path环境变量 ...
- Spring 学习笔记(二)
一.Spring 中的bean配置 –配置形式:基于 XML 文件的方式:基于注解的方式 –Bean 的配置方式:通过全类名(反射).通过工厂方法(静态工厂方法 & 实例工厂方法).Fac ...
- 51Nod 1256 求乘法逆元--扩展欧几里德
#include<stdio.h> int exgcd(int a,int b,int &x,int &y) { ) { x=; y=; return a; } int r ...
- HDU1013 Digital Roots
http://acm.hdu.edu.cn/showproblem.php?pid=1013 #include<iostream> #include "cstdio" ...
- 图论:KM算法
如果,将求二分图的最大匹配的所有匹配边的权重看做1 那么用匈牙利算法求二分图的最大匹配的问题也可以看成求二分图的最大权匹配 如果边权是特例,我们就要使用KM算法来做了 这个算法其实还是比较难的,会用就 ...
- BZOJ 4527: K-D-Sequence
4527: K-D-Sequence Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 163 Solved: 66[Submit][Status][D ...
- 【Atcoder】ARC082 E - ConvexScore
[算法]计算几何 [题意]给定平面直角坐标系上的若干个点,任意选点连成凸多边形,凸多边形的价值定义为2^(n-|S|),其中n为凸多边形内部点数(含边界),|S|为顶点数,求总价值.n<=10^ ...
- web前端 CSS基础
简单的CSS文件 <style type="text/css"> a{ color:rebeccapurple; font-size: larger; font-wei ...