【洛谷 P3842】[TJOI2007]线段(DP)
裸DP。感觉楼下的好复杂,我来补充一个易懂的题解。
f[i][0]表示走完第i行且停在第i行的左端点最少用的步数
f[i][1]同理,停在右端点的最少步数。
那么转移就很简单了,走完当前行且停到左端点,那么一定是从右端点过来的,那么从上一行左端点转移的话就是
f[i][0]=abs(上一行左端点的坐标-本行右端点的坐标+本行线段长度)
从上一行右端点转移同理。
不需要什么判断。边界f[1][0]=r[1]+r[1]-l[1]-1,f[1][1]=r[1]-1,然后直接搞就行了,时间复杂度O(n)。
#include <iostream>
#include <cstdio>
#define rep(i,m,n) for(int i=m;i<=n;++i)
using namespace std;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-')w = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0',ch = getchar();
return s * w;
}
const int MAXN = 20010;
int n;
int l[MAXN], r[MAXN], f[MAXN][2];
int main(){
n = read();
rep(i, 1, n) l[i] = read(), r[i] = read();
f[1][0] = r[1] + r[1] - l[1] - 1;
f[1][1] = r[1] - 1;
rep(i, 2, n)
f[i][0] = min(f[i-1][0] + abs(l[i-1] - r[i]) + r[i] - l[i] + 1, f[i-1][1] + abs(r[i-1] - r[i]) + r[i] - l[i] + 1),
f[i][1] = min(f[i-1][0] + abs(l[i-1] - l[i]) + r[i] - l[i] + 1, f[i-1][1] + abs(r[i-1] - l[i]) + r[i] - l[i] + 1);
printf("%d\n", min(f[n][0] + n - l[n], f[n][1] + n - r[n]));
//rep(i, 1, n){ rep(j, 0, 1) printf("f[%d][%d] = %d, ", i, j, f[i][j]); puts(""); }
return 0;
}
【洛谷 P3842】[TJOI2007]线段(DP)的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷P3928 Sequence2(dp,线段树)
题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- NOIP2017提高组Day2T2 宝藏 洛谷P3959 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/9261079.html 题目传送门 - 洛谷P3959 题目传送门 - Vijos P2032 题意 给定一个 ...
- 洛谷P1244 青蛙过河 DP/思路
又是一道奇奇怪怪的DP(其实是思路题). 原文戳>>https://www.luogu.org/problem/show?pid=1244<< 这题的意思给的挺模糊,需要一定的 ...
- 洛谷P1140 相似基因 (DP)
洛谷P1140 相似基因 题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了44种核苷酸,简记作A,C,G,TA,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. ...
- 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]
题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...
- 洛谷1417 烹调方案 dp 贪心
洛谷 1417 dp 传送门 挺有趣的一道dp题目,看上去接近于0/1背包,但是考虑到取每个点时间不同会对最后结果产生影响,因此需要进行预处理 对于物品x和物品y,当时间为p时,先加x后加y的收益为 ...
- 洛谷1387 二维dp 不是特别简略的题解 智商题
洛谷1387 dp题目,刚开始写的时候使用了前缀和加搜索,复杂度大概在O(n ^ 3)级别,感觉这么写还是比较对得起普及/提高-的难度的..后来看了题解区各位大神的题解,开始一脸mb,之后备受启发. ...
- 洛谷 P2657 (数位DP)
### 洛谷 P2657 题目链接 ### 题目大意:给你一个数的范围 [A,B] ,问你这段区间内,有几个数满足如下条件: 1.两个相邻数位上的数的差值至少为 2 . 2.不包含前导零. 很简单的数 ...
随机推荐
- Windows2008新建域时Administrator 帐户密码不符合要求
Windows 2008 系统安装完毕后,(环境:在安装的时间,系统没有设置密码.做好系统后,进入制面板添加了密码或按ctrl + alt + del 设置密码后 在服务器管理-角色 ...
- 线段树简单入门 (含普通线段树, zkw线段树, 主席树)
线段树简单入门 递归版线段树 线段树的定义 线段树, 顾名思义, 就是每个节点表示一个区间. 线段树通常维护一些区间的值, 例如区间和. 比如, 上图 \([2, 5]\) 区间的和, 为以下区间的和 ...
- win10 java环境变量配置
首先,你应该已经安装了 Java 的 JDK 了(如果没有安装JDK,请跳转到此网址:http://www.oracle.com/technetwork/java/javase/downloads/i ...
- java 泛型类转型
public class NeedCasting { @SuppressWarnings("unchecked") public void f(String[] args)thro ...
- 虚拟现实-VR-UE4-获取UE4
UE4现在虽然是开源,但是并不是免费的,在你的游戏成功后,回收取5%费用和每个月19美元的费用 所以,第一步,进去UE4官网:https://www.unrealengine.com/zh-CN/wh ...
- 《python核心编程第二版》第8章习题
8–1. 条件语句. 请看下边的代码 # statement Aif x > 0:# statement Bpasselif x < 0:# statement Cpasselse:# s ...
- 第二篇 Python初识别及变量名定义规范
第一个Python程序 可以打开notepad或者其他文本编辑器,输入:print("Hello Python!"),将文件保存到任意盘符下,后缀名是 .py 两种python程 ...
- 用Python 的一些用法与 JS 进行类比,看有什么相似?
Python 是一门运用很广泛的语言,自动化脚本.爬虫,甚至在深度学习领域也都有 Python 的身影.作为一名前端开发者,也了解 ES6 中的很多特性借鉴自 Python (比如默认参数.解构赋值. ...
- SQL的鸡肋:“视图”
不知道当年SQL定义者们设计视图时是出于什么样的考虑.实际效果是,视图夹在SQL指令和表之间,形成了一个三明治的结构.在这种结构下做检索,SQL指令每次都要通过视图转换,才能作用到表上.如果不 ...
- Ubuntu 和 Windows 之间进行远程访问和文件互传
1. 利用 Ubuntu 自带软件 Remmina 对另一台 Ubuntu 电脑进行远程访问(同一局域网下) 假设要用 A 电脑来控制 B 电脑,首先需要在 B 电脑上进行桌面共享设置 . 然后打 ...