题目链接

BZOJ2257

题解

由裴蜀定理我们知道,若干的瓶子如此倾倒最小能凑出的是其\(gcd\)

现在我们需要求出\(n\)个瓶子中选出\(K\)个使\(gcd\)最大

每个数求出因数排序即可

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 1005,maxm = 1000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,K;
int p[maxm],pi;
void sp(int x){
p[++pi] = x;
for (int i = 2; i * i <= x; i++)
if (x % i == 0){
p[++pi] = i;
if (i * i != x) p[++pi] = x / i;
}
}
int main(){
n = read(); K = read();
REP(i,n) sp(read());
sort(p + 1,p + 1 + pi);
int ans = 1,cnt = 0;
for (int i = 1; i <= pi; i++){
if (p[i] != p[i - 1]){
if (cnt >= K) ans = max(ans,p[i - 1]);
cnt = 1;
}
else cnt++;
}
if (cnt >= K) ans = max(ans,p[pi]);
printf("%d\n",ans);
return 0;
}

BZOJ2257 [Jsoi2009]瓶子和燃料 【裴蜀定理】的更多相关文章

  1. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  2. luoguP4571 [JSOI2009]瓶子和燃料 裴蜀定理

    裴蜀定理的扩展 最后返回的一定是\(k\)个数的\(gcd\) 因此对于每个数暴力分解因子统计即可 #include <map> #include <cstdio> #incl ...

  3. bzoj2257 [Jsoi2009]瓶子和燃料 最大公约数

    [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1449  Solved: 889[Submit][Status][Di ...

  4. bzoj2257: [Jsoi2009]瓶子和燃料

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MB Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了 ...

  5. 【数学 裴蜀定理】bzoj2257: [Jsoi2009]瓶子和燃料

    使gcd最大的trick Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy的飞船上共有 N ...

  6. [BZOJ2257][Jsoi2009]瓶子和燃料(数学)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2257 分析: 1.先考虑确定的瓶子下的最小体积是多少 ①假设只有两个瓶子v1,v2,易 ...

  7. 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...

  8. BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)

    一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...

  9. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

随机推荐

  1. Java : java基础(2) 集合&正则&异常&File类

    Obj 方法: hashCode() 返回内存地址值, getClass() 返回的时运行时类, getName() 返回类名, toString() 把名字和hashCode() 合在一起返回,如果 ...

  2. hive的load命令

    Hive Load语句不会在加载数据的时候做任何转换工作,而是纯粹的把数据文件复制/移动到Hive表对应的地址. 语法 LOAD DATA [LOCAL] INPATH 'filepath' [OVE ...

  3. Scrapy进阶

    当我们使用scrapy框架爬取网站的时候,我们会有一个入口的url,一个名为start_urls,我们爬取的第一个网页是从这一开始的. 需求: 现在我们有一个这样的需求,比如说我们对起始的URL有一个 ...

  4. Qt之pro文件解析

    在我们创建Qt工程项目时,Qt Creator总会创建一个.pro文件,我们称.pro文件为Qt的工程管理文件.一个工程项目可以包含一个或多个.pro文件.理解和掌握pro文件的用法,将有利于Qt开发 ...

  5. Mongoose模式的扩展

    模式的扩展 默认值 默认值的类型: 固定值.即使生成 代码展示: var mongoose = require('mongoose');mongoose.connect('mongodb://loca ...

  6. python2.7入门---break语句&continue语句&pass空语句

        这篇文章记录的就是比较好玩的东西了,也是比较重要的.咱们先来看一下break语句.Python break语句,就像在C语言中,打破了最小封闭for或while循环.break语句用来终止循环 ...

  7. dfs Gym - 100989L

    AbdelKader enjoys math. He feels very frustrated whenever he sees an incorrect equation and so he tr ...

  8. 1 http协议

    1.四层模型 + 2.socket 3.http协议 4. HTTP请求 跟踪了新浪的首页,我们来总结一下HTTP请求的流程: 3.1.1 步骤1:浏览器首先向服务器发送HTTP请求,请求包括: 方法 ...

  9. 网易云terraform实践

    此文已由作者王慎为授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 一.terraform介绍 随着应用上云的常态化,资源栈动态管理的需求对用户也变得更加急切.资源编排(Res ...

  10. php之apc浅探

    扩展编译: ./configure --enable-apc --with-php-config=/usr/local/php/bin/php-config --prefix=/usr/local/a ...