Pandas基础用法-数据处理【全】-转
完整资料:[数据挖掘入门介绍]
(https://github.com/YouChouNoBB/data-mining-introduction)
# coding=utf-8
# @author: bryan
import pandas as pd
import numpy as np
import pymysql
#缩写
# df 任意的Pandas DataFrame对象
# s 任意的Pandas Series对象,表示一列
#导入数据
filename='D:/IJCAI/file.csv'
pd.read_csv(filename,sep=' ')#从CSV文件导入数据
df=pd.read_csv(filename,sep=' ',header=None) #没有头的文件
df.columns =['f1','f2']
pd.read_table(filename)#从限定分隔符的文本文件导入数据
pd.read_excel(filename)#从Excel文件导入数据
query='select user_id,item_id from data'
db = pymysql.connect(host='host_name', port=3600, user='user_name', passwd='123456', db='db_name',charset="utf8")
pd.read_sql(query, db)#从SQL表/库导入数据
pd.read_json(json_string)#从JSON格式的字符串导入数据
pd.read_html(url)#解析URL、字符串或者HTML文件,抽取其中的tables表格
pd.read_clipboard()#从你的粘贴板获取内容,并传给read_table()
#自己构造dataframe数据
df=pd.DataFrame([[1,2,3],[4,5,6]],columns=['f1','f2','f3'])
df=pd.DataFrame({'user_id':[1,2,3],'item_id':[12,34,56]}) # 按列构造
df=pd.DataFrame([{'user_id':1,'item_id':2},{'user_id':'3'},{'item_id':4}]) #按行构造
#导出数据
df.to_csv(filename,index=False,sep=',')#导出数据到CSV文件
df.to_excel(filename) #导出数据到Excel文件
df.to_sql(table_name, db) #导出数据到SQL表
df.to_json(filename) #以Json格式导出数据到文本文件
#查看数据
df.head(n)#查看DataFrame对象的前n行
df.tail(n)#查看DataFrame对象的最后n行
df.shape()#查看行数和列数
df.info()#查看索引、数据类型和内存信息
df.describe()#查看数值型列的汇总统计
df['user_id'].value_counts(dropna=False) #查看Series对象的唯一值和计数
#数据选取
s=df['user_id']#根据列名,并以Series的形式返回列
df[['user_id', 'item_id']]#以DataFrame形式返回多列
s.iloc[0]#按位置选取数据
s.loc['index_one']#按索引选取数据
df.iloc[0,:]#返回第一行
df.iloc[0,0]#返回第一列的第一个元素
df.sample(frac=0.5) #采样
df.sample(n=len(df))
#数据整理
pd.isnull()#检查DataFrame对象中的空值,并返回一个Boolean数组
pd.notnull()#检查DataFrame对象中的非空值,并返回一个Boolean数组
df.dropna(axis=0)#删除所有包含空值的行
df.dropna(axis=1)#删除所有包含空值的列
df.dropna(axis=1,thresh=n)#删除所有小于n个非空值的行
df.fillna(x)#用x替换DataFrame对象中所有的空值
df.fillna(df.mode().iloc[0]) #众值填充
df.fillna(df.median()) #中位数填充
df["user_age"][df.age.isnull()]="0" #对某一列填充
s.astype(float)#将Series中的数据类型更改为float类型
df["user_age"]=df["user_age"].astype('int') #更改某列类型
s.replace(1,'one')#用‘one’代替所有等于1的值
s.replace([1,3],['one','three'])#用'one'代替1,用'three'代替3
df.columns = ['a','b','c']#重命名列名
df.rename(columns=lambda x: x + 1)#批量更改列名
df.rename(index=lambda x: x + 1)#批量重命名索引
df.rename(columns={'old_name': 'new_ name'})#选择性更改列名
df.set_index('column_one')#更改索引列
df.reset_index(drop=True) #重置索引,主要用在各种操作之后,索引会被打乱
#数据处理#Filter 、Sort 和 GroupBy
df[df[col] > 0.5]#选择col列的值大于0.5的行
df.sort_values(by='col1',ascending=True)#按照列col1排序数据,默认升序排列
df.sort_values([col1,col2], ascending=[True,False])#先按列col1升序排列,后按col2降序排列数据
df.groupby(col)#返回一个按列col进行分组的Groupby对象
df.groupby([col1,col2])#返回一个按多列进行分组的Groupby对象
df.groupby(col1)[col2].apply(np.mean)#返回按列col1进行分组后,列col2的均值
df.pivot_table(index=col1, values=[col2,col3], aggfunc=max)#创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表
df.groupby(col1).agg(np.mean)#返回按列col1分组的所有列的均值
df.groupby('user_id',as_index=False)['is_trade'].agg({'buy':'sum','click':'count','cvr':'mean'}) #生成新的df,列是user_id,buy,click,cvr
for index,row in df.iterrows():
# index 是行号
# row是一行
print(index,row['user_id'])
break
pass
for key,df in df.groupby('user_gender_id'):
# key 就是user_id
# df就是分组后的dataframe
print(key,len(df))
pass
df['user_id'].apply(np.mean)#对DataFrame中的每一列应用函数np.mean
df.apply(np.max,axis=1)#对DataFrame中的每一行应用函数np.max
#构造分组排序特征,比如对shop分组,对组里面的item转化率分别排序
df.groupby('shop_id',as_index=False)['item_cvr'].rank(ascending=False, method='dense')
# 数据合并
df1.append(df2)#将df2中的行添加到df1的尾部
pd.concat([df1, df2],axis=1)#按列合并
pd.concat([df1,df2],axis=0)#按行合并
pd.merge(df1,df2,on='user_id',how='inner')#对df1的列和df2的列执行SQL形式的join
#差集计算
df1=pd.DataFrame({'user_id':[1,2,3,4],'item_id':[11,22,33,44]})
df2=pd.DataFrame({'user_id':[1,2]})
df2['flag']=1
df3=pd.merge(df1,df2,on='user_id',how='left')
df3=df3[df3.flag.isnull()].drop('flag',axis=1)
# 数据统计
df.mean()#返回所有列的均值
df.corr()#返回所有列与列之间的相关系数
df.item_star_level.corr(df.is_trade)
df.count()#返回每一列中的非空值的个数
df.max()#返回每一列的最大值
df.min()#返回每一列的最小值
df.median()#返回每一列的中位数
df.std()#返回每一列的标准差
df.dtypes #查看数据类型
df["user_age_level"].hist() #查看变量分布
df.isnull().sum() #查看每一列缺失值情况
df['n_null'] = df.isnull().sum(axis=1) #查看每一行缺失值情况
df["user_age_level"].value_counts() #查看这一列的值统计
df['user_age_level'].unique() #查看数据取值
Pandas基础用法-数据处理【全】-转的更多相关文章
- pandas基础用法——索引
# -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Softwa ...
- pandas 基础用法
pandas 是一个基于 Numpy 构建, 强大的数据分析工具包 主要功能 独特的数据结构 DataFrame, Series 集成时间序列功能 提供丰富的数学运算操作 灵活处理缺失数据 Serie ...
- pandas基础用法
首先生成一维数组 data = pd.Series([1,2,3,4,5,6,7,8,9])data运行结果 data.head()#默认取前五条,当然也可以加参数 data.tail()#默认取前五 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- Pandas基础学习与Spark Python初探
摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...
- Unity 3D开发-C#脚本语言的一些基础用法
Unity 中C#语言的一些基础用法 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) 1 Lerp -- 线 ...
- 《零基础学JavaScript(全彩版)》学习笔记
<零基础学JavaScript(全彩版)>学习笔记 二〇一九年二月九日星期六0时9分 前期: 刚刚学完<零基础学HTML5+CSS3(全彩版)>,准备开始学习JavaScrip ...
- 数据分析02 /pandas基础
数据分析02 /pandas基础 目录 数据分析02 /pandas基础 1. pandas简介 2. Series 3. DataFrame 4. 总结: 1. pandas简介 numpy能够帮助 ...
- PropertyGrid控件由浅入深(二):基础用法
目录 PropertyGrid控件由浅入深(一):文章大纲 PropertyGrid控件由浅入深(二):基础用法 控件的外观构成 控件的外观构成如下图所示: PropertyGrid控件包含以下几个要 ...
随机推荐
- CSS基础4——使用CSS格式化元素内容的文本
CSS的文本属性用于控制文本的段落格式,如设置首行缩进.段落对齐方式.字间距.行间距等. 1.设置文本首行缩进:text-indent 可选属性值包含: 长度 / 百分比 2.设置文本对齐方式:tex ...
- ExtJs学习-搭建开发环境
Extjs是一个非常棒的ajax框架,可以用来开发十分绚丽外观的客户端框架,能使B/S框架更加具有活力.它是一个用javascript编写的框架,与后台技术无关的ajax框架.因此,可以把ExtJs使 ...
- VC++ 汇编相关的东西
Tips: VC++在新建一个.asm文件后必须重新导入project中才能进行编译. 下面是一个汇编与C++相互调用的例子: Main.cpp #include <stdio.h> #i ...
- Scrapy爬虫笔记
Scrapy是一个优秀的Python爬虫框架,可以很方便的爬取web站点的信息供我们分析和挖掘,在这记录下最近使用的一些心得. 1.安装 通过pip或者easy_install安装: 1 sudo p ...
- python正则表达式练习
正则表达式修饰符 - 可选标志 正则表达式可以包含一些可选标志修饰符来控制匹配的模式.修饰符被指定为一个可选的标志.多个标志可以通过按位 OR(|) 它们来指定.如 re.I | re.M 被设置成 ...
- Win7系统安装 MySQL 8.0.11
1. 下载 MySQL 8.0.11 版本 下载地址: https://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0.11-winx64.zip 2. 下载 ...
- 【BZOJ4448】[Scoi2015]情报传递 主席树+LCA
[BZOJ4448][Scoi2015]情报传递 Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员能有若干名(可能没有)下线,除1名大头 ...
- CAS单点登录------未认证授权服务
问题背景:之前我使用的127.0.0.1进行CAS 直接url 进行过滤! 后来我用nginx 进行反向代理 出现问题: 如下图 第一眼,就在内心想,草这什么鬼! 麻蛋! ON! 调试了五分 ...
- JavaScript数据结构与算法-散列练习
散列的实现 // 散列类 - 线性探测法 function HashTable () { this.table = new Array(137); this.values = []; this.sim ...
- 一篇搞定spring Jpa操作数据库
开始之前你必须在项目配置好数据库,本文使用的spring boot,相比spring,spring boot省去了很多各种对以来组件复杂的配置,直接在pom配置组件,完后会自动帮我们导入组件 < ...