Description

Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence. 
2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

Source

正解:DP

解题报告:

  DP题,乍一看我居然不会做,也是醉了。开始想用贪心水过,发现会gi烂。

  详细博客:http://blog.csdn.net/lijiecsu/article/details/7589877

  不详细说了,见代码:

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXN = ;
char ch[MAXN];
int l;
int f[MAXN][MAXN],c[MAXN][MAXN]; inline void output(int l,int r){
if(l>r) return ;
if(l==r) {
if(ch[l]=='(' || ch[l]==')') printf("()");
else printf("[]");
}
else{
if(c[l][r]>=) {
output(l,c[l][r]);
output(c[l][r]+,r);
}
else{
if(ch[l]=='(') {
printf("(");
output(l+,r-);
printf(")");
}
else{
printf("[");
output(l+,r-);
printf("]");
}
}
}
} inline void solve(){
scanf("%s",ch);
int len=strlen(ch);
for(int i=;i<len;i++) f[i][i]=;
for(int i=;i<len;i++) for(int j=;j<len;j++) c[i][j]=-;
for(int l=;l<=len-;l++)
for(int i=;i+l<=len-;i++){
int j=i+l;
int minl=f[i][i]+f[i+][j];
c[i][j]=i;
for(int k=i+;k<j;k++){
if(minl>f[i][k]+f[k+][j]) {
minl=f[i][k]+f[k+][j];
c[i][j]=k;
}
}
f[i][j]=minl; if(( ch[i]=='(' && ch[j]==')' ) || ( ch[i]=='[' && ch[j]==']' )) {
if(f[i][j]>f[i+][j-]) {
f[i][j]=f[i+][j-];
c[i][j]=-;
}
}
} output(,len-);
printf("\n");
} int main()
{
solve();
return ;
}

POJ1141 Brackets Sequence的更多相关文章

  1. [原]POJ1141 Brackets Sequence (dp动态规划,递归)

    本文出自:http://blog.csdn.net/svitter 原题:http://poj.org/problem?id=1141 题意:输出添加括号最少,并且使其匹配的串. 题解: dp [ i ...

  2. POJ 题目1141 Brackets Sequence(区间DP记录路径)

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27793   Accepted: 788 ...

  3. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

  4. 记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence

    题目传送门 /* 记忆化搜索(DP+DFS):dp[i][j] 表示第i到第j个字符,最少要加多少个括号 dp[x][x] = 1 一定要加一个括号:dp[x][y] = 0, x > y; 当 ...

  5. ZOJ1463:Brackets Sequence(间隙DP)

    Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular seque ...

  6. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  7. [poj P1141] Brackets Sequence

    [poj P1141] Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K   Special Judge Description ...

  8. CSUOJ 1271 Brackets Sequence 括号匹配

    Description ]. Output For each test case, print how many places there are, into which you insert a ' ...

  9. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

随机推荐

  1. 通过imeMode禁用键盘只能输入数字

    var obj = document.getElementById('y'); var arr = [48,49,50,51,52,53,54,55,56,57];//数字对应的键码 obj.onke ...

  2. KeyBord事件分发和接收简要过程代码示例

    step1:调用ViewRootImpl的内部类ImeInputStage的成员函数onProcess来判断输入法是否处于激活状态 final class ImeInputStage extends ...

  3. Android应用性能优化之使用SparseArray替代HashMap

    HashMap是java里比较常用的一个集合类,我比较习惯用来缓存一些处理后的结果.最近在做一个Android项目,在代码中定义这样一个变量,实例化时,Eclipse却给出了一个 performanc ...

  4. log4j输出日志乱码(转)

    log4j日志文件乱码问题的解决方法 log4j日志文件中文乱码处理方法 log4j 控制台和文件输出乱码问题解决 写在前面,第三篇文章中将原因解释的最清楚,为什么设置为UTF-8或者GBK就生效了, ...

  5. 构架高性能WEB网站的几点知识

    前言: 对于构架高性能的web网站大家都很感兴趣,本文从几点粗谈高性能web网站需要考虑的问题. HTML静态化 什么是html静态化? 说得简单点,就是把所有不是.htm或者.html的页面改为.h ...

  6. 【转】使用sklearn做单机特征工程

    这里是原文 说明:这是我用Markdown编辑的第一篇随笔 目录 1 特征工程是什么? 2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 无量纲化与正则化的区别 ...

  7. 学习Shell脚本编程(第2期)_编写修改权限及执行Shell程序的步骤

    编写Shell程序 执行Shell程序 Shell程序有很多类似C语言和其他程序设计语言的特征,但是又没有程序语言那样复杂.Shell程序是指放在一个文件中的一系列Linux命令和实用程序.在执行的时 ...

  8. 从0开始学Java——@override的作用

    早上跟着<jsp&Servlet学习笔记>来学习jsp,在使用eclipse创建了一个servlet类之后,发现自动创建的类和书上相比,doGet方法的前面少了@override, ...

  9. Jenkins问题汇总

    1.在jenkins里使用shell,如果shell起子进程会被jenkins强制杀掉的解决方法. http://scmbob.org/start-process-in-jenkins.html

  10. SQL Serve允许远程连接的解决方法

    (一)用户需要做的第一件事是检查SQL数据库服务器中是否允许远程链接.在SQL 2008服务器中可以通过打开SQL Server 2008管理项目(SQL Server 2008 Management ...