Caesar's Legions(三维dp)
Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Description
Gaius Julius Caesar, a famous general, loved to line up his soldiers. Overall the army had n1 footmen and n2 horsemen. Caesar thought that an arrangement is not beautiful if somewhere in the line there are strictly more that k1 footmen standing successively one after another, or there are strictly more than k2 horsemen standing successively one after another. Find the number of beautiful arrangements of the soldiers.
Note that all n1 + n2 warriors should be present at each arrangement. All footmen are considered indistinguishable among themselves. Similarly, all horsemen are considered indistinguishable among themselves.
Input
The only line contains four space-separated integers n1, n2, k1, k2 (1 ≤ n1, n2 ≤ 100, 1 ≤ k1, k2 ≤ 10) which represent how many footmen and horsemen there are and the largest acceptable number of footmen and horsemen standing in succession, correspondingly.
Output
Print the number of beautiful arrangements of the army modulo 100000000(108). That is, print the number of such ways to line up the soldiers, that no more than k1 footmen stand successively, and no more than k2 horsemen stand successively.
Sample Input
2 1 1 10
1
2 3 1 2
5
2 4 1 1
0
Hint
Let's mark a footman as 1, and a horseman as 2.
In the first sample the only beautiful line-up is: 121
In the second sample 5 beautiful line-ups exist: 12122, 12212, 21212, 21221, 22121
The problem is solved lazy dynamics. Let z[n1] [n2] [2] - a number of ways to place troops in a legion of Caesar. Indicate the following parameters, n1 – is a number of footmen, n2 – is a number of horseman, the third parameter indicates what troops put Caesar in the beginning of the line. If Caesar wants to put the footmen, the state dynamics of the z [n1] [n2] [0] go to the state
z [n1 - i] [n2] [0], where 0 <= i <= min (k1, n1) . If Caesar wants to put the riders, the state dynamics of the z [n1] [n2] [1] go to the state z [n1] [n2 - i] [1], where 0 <= I <= min (k2, n2) .
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int mod = ;
int n1 , n2 , k1 , k2 ;
int a[][][] ; int Caesar (int n1 , int n2 , int f)
{
if (a[n1][n2][f] != - ) {
return a[n1][n2][f] ;
}
if (n1 + n2 == ) {
a[n1][n2][f] = % mod ;
return a[n1][n2][f] ;
}
a[n1][n2][f] = ;
int i ;
if (f == ) {
for (i = ; i <= min (k1 , n1 ) ; i++) {
a[n1][n2][f] += Caesar (n1 - i , n2 , - f) ;
a[n1][n2][f] %= mod ;
}
}
else {
for (i = ; i <= min (k2 , n2 ) ; i++) {
a[n1][n2][f] += Caesar (n1 , n2 - i , - f ) ;
a[n1][n2][f] %= mod ;
}
}
return a[n1][n2][f] ;
} void solve ()
{
memset (a , 0xFF , sizeof(a) ) ;
printf ("%d\n" , ( Caesar (n1 , n2 , ) + Caesar (n1 , n2 , ) ) % mod ) ;
} int main ()
{
#ifdef online_jude
freopen ("a.txt" , "r" , stdin ) ;
#endif // online_jude
scanf ("%d%d%d%d" , &n1 , &n2 , &k1 , &k2 ) ;
solve () ;
return ;
}
Caesar's Legions(三维dp)的更多相关文章
- Codeforces118D Caesar's Legions(DP)
题目 Source http://codeforces.com/problemset/problem/118/D Description Gaius Julius Caesar, a famous g ...
- D. Caesar's Legions 背包Dp 递推DP
http://codeforces.com/problemset/problem/118/D 设dp[i][j][k1][k2] 表示,放了i个1,放了j个2,而且1的连续个数是k1,2的连续个数是k ...
- 三维dp&codeforce 369_2_C
三维dp&codeforce 369_2_C 标签: dp codeforce 369_2_C 题意: 一排树,初始的时候有的有颜色,有的没有颜色,现在给没有颜色的树染色,给出n课树,用m种燃 ...
- P1006 传纸条(二维、三维dp)
P1006 传纸条 输入输出样例 输入 #1 复制 3 3 0 3 9 2 8 5 5 7 0 输出 #1 复制 34 说明/提示 [限制] 对于 30% 的数据,1≤m,n≤10: 对于 100% ...
- Codeforces 118 D. Caesar's Legions (dp)
题目链接:http://codeforces.com/contest/118/problem/D 有n个步兵和m个骑兵要排成一排,其中连续的步兵不能超过k1个,连续的骑兵不能超过k2个. dp[i][ ...
- 【dp】D. Caesar's Legions
https://www.bnuoj.com/v3/contest_show.php?cid=9146#problem/D [题意]给定n1个A,n2个B,排成一排,要求A最多能连续k1个紧挨着,B最多 ...
- Caesar's Legions(CodeForces-118D) 【DP】
题目链接:https://vjudge.net/problem/CodeForces-118D 题意:有n1名步兵和n2名骑兵,现在要将他们排成一列,并且最多连续k1名步兵站在一起,最多连续k2名骑兵 ...
- dp D. Caesar's Legions
https://codeforces.com/problemset/problem/118/D 这个题目有点思路,转移方程写错了. 这个题目看到数据范围之后发现很好dp, dp[i][j][k1][k ...
- codeforces118D. Caesar's Legions
地址:http://www.codeforces.com/problemset/problem/118/D 题目: Gaius Julius Caesar, a famous general, lov ...
随机推荐
- 用scheme语言实现SPFA算法(单源最短路)
最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...
- WDCP安装并配置php5.4和mongodb
记录一下,免得忘了.全部都是自己测试用过的安装过程没有问题. linux常用命令 mv 移动文件 mkdir 创建文件夹 rm 删除 cp 复制 netstat 网络状态 tar 解压 wget 下载 ...
- angular_$inject
<!DOCTYPE HTML> <html lang="zh-cn" ng-app="MainApp"> <head> &l ...
- The first gui program by Qt
#include<QApplication> #include<QPushButton> int main(int argc, char **argv) { QAppl ...
- Maven-在eclipse创建maven项目
在eclipse使用maven则需要给eclipse安装maven插件,具体安装maven插件安装相关文章 构建Maven项目 以eclipse3.6为例 1)创建简单Maven项目 点击Eclips ...
- Java设计模式-观察者模式(Observer)
包括这个模式在内的接下来的四个模式,都是类和类之间的关系,不涉及到继承,学的时候应该 记得归纳,记得本文最开始的那个图.观察者模式很好理解,类似于邮件订阅和RSS订阅,当我们浏览一些博客或wiki时, ...
- 【POJ 1061】青蛙的约会
题 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...
- SourceTree&Git部分名词解释
SourceTree&Git部分名词解释 克隆(clone):从远程仓库URL加载创建一个与远程仓库一样的本地仓库 提交(commit):将暂存文件上传到本地仓库(我们在Finder中对本地仓 ...
- 802.11协议帧格式、Wi-Fi连接交互过程、无线破解入门研究
相关学习资料 Linux黑客大曝光: 第8章 无线网络 无线网络安全攻防实战进阶 无线网络安全 黑客大曝光 第2版 http://zh.wikipedia.org/wiki/IEEE_802.11 h ...
- JSON后端页面解析
json-lib 请求: http://localhost:8080/MyWeb/pay?cmd=getUrl¶m={"OrderId":"sddd111 ...