Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Gaius Julius Caesar, a famous general, loved to line up his soldiers. Overall the army had n1 footmen and n2 horsemen. Caesar thought that an arrangement is not beautiful if somewhere in the line there are strictly more that k1 footmen standing successively one after another, or there are strictly more than k2 horsemen standing successively one after another. Find the number of beautiful arrangements of the soldiers.

Note that all n1 + n2 warriors should be present at each arrangement. All footmen are considered indistinguishable among themselves. Similarly, all horsemen are considered indistinguishable among themselves.

Input

The only line contains four space-separated integers n1n2k1k2 (1 ≤ n1, n2 ≤ 100, 1 ≤ k1, k2 ≤ 10) which represent how many footmen and horsemen there are and the largest acceptable number of footmen and horsemen standing in succession, correspondingly.

Output

Print the number of beautiful arrangements of the army modulo 100000000(108). That is, print the number of such ways to line up the soldiers, that no more than k1 footmen stand successively, and no more than k2 horsemen stand successively.

Sample Input

Input
2 1 1 10
Output
1
Input
2 3 1 2
Output
5
Input
2 4 1 1
Output
0

Hint

Let's mark a footman as 1, and a horseman as 2.

In the first sample the only beautiful line-up is: 121

In the second sample 5 beautiful line-ups exist: 12122, 12212, 21212, 21221, 22121

The problem is solved lazy dynamics. Let z[n1] [n2] [2] - a number of ways to place troops in a legion of Caesar. Indicate the following parameters, n1 – is a number of footmen, n2 – is a number of horseman, the third parameter indicates what troops put Caesar in the beginning of the line. If Caesar wants to put the footmen, the state dynamics of the z [n1] [n2] [0] go to the state

z [n1 - i] [n2] [0], where 0 <= i <= min (k1, n1) . If Caesar wants to put the riders, the state dynamics of the z [n1] [n2] [1] go to the state z [n1] [n2 - i] [1], where 0 <= I <= min (k2, n2) .

 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int mod = ;
int n1 , n2 , k1 , k2 ;
int a[][][] ; int Caesar (int n1 , int n2 , int f)
{
if (a[n1][n2][f] != - ) {
return a[n1][n2][f] ;
}
if (n1 + n2 == ) {
a[n1][n2][f] = % mod ;
return a[n1][n2][f] ;
}
a[n1][n2][f] = ;
int i ;
if (f == ) {
for (i = ; i <= min (k1 , n1 ) ; i++) {
a[n1][n2][f] += Caesar (n1 - i , n2 , - f) ;
a[n1][n2][f] %= mod ;
}
}
else {
for (i = ; i <= min (k2 , n2 ) ; i++) {
a[n1][n2][f] += Caesar (n1 , n2 - i , - f ) ;
a[n1][n2][f] %= mod ;
}
}
return a[n1][n2][f] ;
} void solve ()
{
memset (a , 0xFF , sizeof(a) ) ;
printf ("%d\n" , ( Caesar (n1 , n2 , ) + Caesar (n1 , n2 , ) ) % mod ) ;
} int main ()
{
#ifdef online_jude
freopen ("a.txt" , "r" , stdin ) ;
#endif // online_jude
scanf ("%d%d%d%d" , &n1 , &n2 , &k1 , &k2 ) ;
solve () ;
return ;
}

Caesar's Legions(三维dp)的更多相关文章

  1. Codeforces118D Caesar's Legions(DP)

    题目 Source http://codeforces.com/problemset/problem/118/D Description Gaius Julius Caesar, a famous g ...

  2. D. Caesar's Legions 背包Dp 递推DP

    http://codeforces.com/problemset/problem/118/D 设dp[i][j][k1][k2] 表示,放了i个1,放了j个2,而且1的连续个数是k1,2的连续个数是k ...

  3. 三维dp&codeforce 369_2_C

    三维dp&codeforce 369_2_C 标签: dp codeforce 369_2_C 题意: 一排树,初始的时候有的有颜色,有的没有颜色,现在给没有颜色的树染色,给出n课树,用m种燃 ...

  4. P1006 传纸条(二维、三维dp)

    P1006 传纸条 输入输出样例 输入 #1 复制 3 3 0 3 9 2 8 5 5 7 0 输出 #1 复制 34 说明/提示 [限制] 对于 30% 的数据,1≤m,n≤10: 对于 100% ...

  5. Codeforces 118 D. Caesar's Legions (dp)

    题目链接:http://codeforces.com/contest/118/problem/D 有n个步兵和m个骑兵要排成一排,其中连续的步兵不能超过k1个,连续的骑兵不能超过k2个. dp[i][ ...

  6. 【dp】D. Caesar's Legions

    https://www.bnuoj.com/v3/contest_show.php?cid=9146#problem/D [题意]给定n1个A,n2个B,排成一排,要求A最多能连续k1个紧挨着,B最多 ...

  7. Caesar's Legions(CodeForces-118D) 【DP】

    题目链接:https://vjudge.net/problem/CodeForces-118D 题意:有n1名步兵和n2名骑兵,现在要将他们排成一列,并且最多连续k1名步兵站在一起,最多连续k2名骑兵 ...

  8. dp D. Caesar's Legions

    https://codeforces.com/problemset/problem/118/D 这个题目有点思路,转移方程写错了. 这个题目看到数据范围之后发现很好dp, dp[i][j][k1][k ...

  9. codeforces118D. Caesar's Legions

    地址:http://www.codeforces.com/problemset/problem/118/D 题目: Gaius Julius Caesar, a famous general, lov ...

随机推荐

  1. 第一章 Javscript的数据类型

      任何编程语言,都会讲到数据类型,那么我在这里也简述下Js的数据类型,在js里判断一个变量的数据类型用typeof() 简单数据类型undefined: 代表一切未知的事物,啥都没有,无法想象,代码 ...

  2. ubuntu中管理用户和用户组

    1. 添加一个用户组并指定id为1002 sudo groupadd -g 1002 www 2. 添加一个用户到www组并指定id为1003 sudo useradd wyx -g 1002 -u ...

  3. IOS 判断日期是今天,昨天还是明天

    git地址: https://github.com/JsoonLi/NSDate-Extension   - (NSString *)compareDate:(NSDate *)date{ NSTim ...

  4. javascript键盘输入控制

    获取键盘控制事件 document.onkeydown = keyDown 当浏览器读到这个语句时,无论按下键盘上的哪个键,都将呼叫KeyDown()函数. 不同浏览器的实现: Netscape Ne ...

  5. hdu2222 AC自动机

    字典树也可以做. #include<stdio.h> #include<string.h> #include<stdlib.h> #define maxn 1000 ...

  6. CSS布局自适应高度解决方法

    这是一个比较典型的三行二列布局,每列高度(事先并不能确定哪列的高度)的相同,是每个设计师追求的目标,按一般的做法,大多采用背景图填充.加JS脚本的方法使列的高度相同,本文要介绍的是采用容器溢出部分隐藏 ...

  7. Oracle导出导入数据库的方式

    一.导入导出.dmp文件 利用cmd的操作命令导出,详情如下(备注:方法二是转载网上的教程):1:G:\Oracle\product\10.1.0\Client_1\NETWORK\ADMIN目录下有 ...

  8. Spring的拦截器

    <filter> <filter-name>characterEncodingFilter</filter-name> <filter-class>or ...

  9. shopex商城的部署和安装

    1.在网站上下载最新的压缩包: 2.shopex是商业软件,不开源,且源代码是加密的! 3.如果你出现zend的错误,是因为你的php环境没有安装此插件,推荐使用phpstudy最新版本,我使用的ph ...

  10. FireFox插件

    Firebug和YSlow就不说了,太常用了,开发必备.