nim3取石子游戏 (威佐夫博弈)
http://www.cnblogs.com/jackge/archive/2013/04/22/3034968.html
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
所谓威佐夫博弈,是ACM题中常见的组合游戏中的一种,大致上是这样的:
有两堆石子,不妨先认为一堆有 10,另一堆有 15 个,双方轮流取走一些石子,合法的取法有如下两种:
1、在一堆石子中取走任意多颗;
2、在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必胜策略。
两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态,并画在平面直角坐标系上。
和前面类似,(0,0)肯定是 P 态,又叫必败态。(0,k),(k,0),(k,k)系列的节点肯定不是 P 态,而是必胜态,你面对这样的局面一定会胜,只要按照规则取一次就可以了。再看 y = x 上方未被划去的格点,(1,2)是 P 态。k > 2 时,(1,k)不是 P 态,比如你要是面对(1,3)的局面,你是有可能赢的。同理,(k,2),(1 + k, 2 + k)也不是 P 态,划去这些点以及它们的对称点,然后再找出 y = x 上方剩余的点,你会发现(3,5)是一个 P 态,如此下去,如果我们只找出 a ≤ b 的 P 态,则它们是(0,0),(1,2),(3,5),(4,7),(6,10)……它们有什么规律吗?
忽略(0,0),很快会发现对于第 i 个 P 态的 a,a = i * (sqrt(5) + 1)/2 然后取整;而 b = a + i。居然和黄金分割点扯上了关系。
前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。
判断一个点是不是必败点的公式与黄金分割有关(我无法给出严格的数学证明,谁能给出严格的数学证明记得告诉我),为:
m(k) = k * (1 + sqrt(5))/2
n(k) = m(k) + k;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; int a,b; int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d",&a,&b)){
if(a<b){
a^=b;
b^=a;
a^=b;
}
int k=a-b;
a=(int)(k*(+sqrt())/2.0);
if(a==b)
printf("0\n");
else
printf("1\n");
}
return ;
}
原来这tm是编程之美上的题。。。上面的结论编程之美上有证明。。。p72
还有一种找规律的方法。。。用类似质素的选择的方法,过滤数的方法(2的倍数,3的倍数...),把必胜态都过滤掉。。。
然后剩下必败态,(1,2),(3,5),(4,7)...比如(3,5)能被对方换为(1,2)。。。所以这样下去就行。。。o(n)
nim3取石子游戏 (威佐夫博弈)的更多相关文章
- HDU 1527 取石子游戏(威佐夫博弈)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- 洛谷P2252 取石子游戏(威佐夫博弈)
题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...
- hdu1527取石子游戏(威佐夫博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- P2252 取石子游戏 威佐夫博弈
$ \color{#0066ff}{ 题目描述 }$ 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆 ...
- POJ 1067 取石子游戏 威佐夫博弈
威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 我们用(ak,bk)(ak ≤ bk ,k= ...
- POJ1067 取石子游戏 威佐夫博弈 博弈论
http://poj.org/problem?id=1067 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可 ...
- HDU2177:取(2堆)石子游戏(威佐夫博弈)
Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同 ...
- poj 1067 取石子游戏( 威佐夫博奕)
题目:http://poj.org/problem?id=1067 题意:有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的 ...
- 取石子游戏(hdu1527 博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
随机推荐
- Configuring Service Broker for Asynchronous Processing
Configuring Service Broker for Asynchronous Processing --create a database and enable the database f ...
- Week3 博客阅读感想和代码复审
一.关于博客阅读感想 阅读了十多篇老程序员(大多在计算机相关行业工作超过10年)关于自身经历的博客,很有感触.这里一方面总结一下看博客的收获,另一方面写点自己的感受. 首先,这些博客不少涉及到了两大类 ...
- WatiN和HttpWatch交互简介
Httpwatch是一款强大的网页数据分析工具,它可以在不改变浏览器和网络设置的基础上捕捉http和https数据.查看底层的http数据,包括headers, cookies, cache等,同时统 ...
- asp.net的code-Behind技术
新建一个VS.NET下的项目..看到ASPX,RESX和CS三个后缀的文件了吗??这个就是代码分离.实现了HTML代码和服务器代码分离.方便代码编写和整理. code-Behind:asp.net中的 ...
- jquery 字符串转dom对象及对该对象使用选择器查询
<script> $(document).ready(function () { var htmlStr = '<div id="outerDiv">< ...
- 织梦CMS的MVC体系
13年无意中翻看DedeCMS的代码,发现DedeCMS中是有了一个基本MVC框架的,在现有的版本中,主要是应用到了ask.book等模块上. 织梦这个东西,里面很多设计思想是非常优秀的,但整体代码的 ...
- java基础练习[一]
moka同学java学习笔记 package moka.hello; public class HelloWorld { public static void main(String[] ar ...
- CodeBlocks VS2015编译环境设置
1. 菜单 Settings --> Compiler... 2. 设置vs 的安装路径
- ahjesus js 快速求幂
/* 快速幂计算,传统计算方式如果幂次是100就要循环100遍求值 快速幂计算只需要循环7次即可 求x的y次方 x^y可以做如下分解 把y转换为2进制,设第n位的值为i,计算第n位的权为x^(2^(n ...
- springmvc+mybatis+spring 整合
获取[下载地址] [免费支持更新]三大数据库 mysql oracle sqlsever 更专业.更强悍.适合不同用户群体[新录针对本系统的视频教程,手把手教开发一个模块,快速掌握本系统] ...