nim3取石子游戏 (威佐夫博弈)
http://www.cnblogs.com/jackge/archive/2013/04/22/3034968.html
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
所谓威佐夫博弈,是ACM题中常见的组合游戏中的一种,大致上是这样的:
有两堆石子,不妨先认为一堆有 10,另一堆有 15 个,双方轮流取走一些石子,合法的取法有如下两种:
1、在一堆石子中取走任意多颗;
2、在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必胜策略。
两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态,并画在平面直角坐标系上。
和前面类似,(0,0)肯定是 P 态,又叫必败态。(0,k),(k,0),(k,k)系列的节点肯定不是 P 态,而是必胜态,你面对这样的局面一定会胜,只要按照规则取一次就可以了。再看 y = x 上方未被划去的格点,(1,2)是 P 态。k > 2 时,(1,k)不是 P 态,比如你要是面对(1,3)的局面,你是有可能赢的。同理,(k,2),(1 + k, 2 + k)也不是 P 态,划去这些点以及它们的对称点,然后再找出 y = x 上方剩余的点,你会发现(3,5)是一个 P 态,如此下去,如果我们只找出 a ≤ b 的 P 态,则它们是(0,0),(1,2),(3,5),(4,7),(6,10)……它们有什么规律吗?
忽略(0,0),很快会发现对于第 i 个 P 态的 a,a = i * (sqrt(5) + 1)/2 然后取整;而 b = a + i。居然和黄金分割点扯上了关系。
前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。
判断一个点是不是必败点的公式与黄金分割有关(我无法给出严格的数学证明,谁能给出严格的数学证明记得告诉我),为:
m(k) = k * (1 + sqrt(5))/2
n(k) = m(k) + k;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; int a,b; int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d",&a,&b)){
if(a<b){
a^=b;
b^=a;
a^=b;
}
int k=a-b;
a=(int)(k*(+sqrt())/2.0);
if(a==b)
printf("0\n");
else
printf("1\n");
}
return ;
}
原来这tm是编程之美上的题。。。上面的结论编程之美上有证明。。。p72
还有一种找规律的方法。。。用类似质素的选择的方法,过滤数的方法(2的倍数,3的倍数...),把必胜态都过滤掉。。。
然后剩下必败态,(1,2),(3,5),(4,7)...比如(3,5)能被对方换为(1,2)。。。所以这样下去就行。。。o(n)
nim3取石子游戏 (威佐夫博弈)的更多相关文章
- HDU 1527 取石子游戏(威佐夫博弈)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- 洛谷P2252 取石子游戏(威佐夫博弈)
题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...
- hdu1527取石子游戏(威佐夫博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- P2252 取石子游戏 威佐夫博弈
$ \color{#0066ff}{ 题目描述 }$ 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆 ...
- POJ 1067 取石子游戏 威佐夫博弈
威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 我们用(ak,bk)(ak ≤ bk ,k= ...
- POJ1067 取石子游戏 威佐夫博弈 博弈论
http://poj.org/problem?id=1067 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可 ...
- HDU2177:取(2堆)石子游戏(威佐夫博弈)
Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同 ...
- poj 1067 取石子游戏( 威佐夫博奕)
题目:http://poj.org/problem?id=1067 题意:有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的 ...
- 取石子游戏(hdu1527 博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
随机推荐
- DalekJS – 基于 JavaScript 实现跨浏览器的自动化测试
在 Web 项目中,浏览器兼容以及跨浏览器测试是最重要的也是最费劲的工作.DalekJS 是一个基于 JavaScript(或 Node.js) 的免费和开源的自动化测试接口.它能够同时运行测试一组流 ...
- UITextField-secureTextEntry
1.UITextFiled的密文输入 secureTextEntry 安全文本输入 secure:安全 Entry:入口
- C#语法糖之 ReflectionSugar 通用反射类
用法很简单: ReflectionSugar rs = new ReflectionSugar(100);//缓存100秒 ,可以不填默认不缓存 rs.有嘛点嘛 性能测试: 性能测试类源码: ht ...
- 前端自动化工具 -- Gulp 使用简介
gulp是基于流的前端自动化构建工具. 之前也谈到了 grunt的用法,grunt其实就是配置+配置的形式. 而gulp呢,是基于stream流的形式,也就是前一个函数(工厂)制造出结果,提供后者使用 ...
- MVC。Action方法,常用的返回类型有几种?
常用的: 1,string,直接返回响应报文字符串 public ActionResult test(){return "哈哈";}2.ViewResult,ActionResul ...
- 字符串hash - POJ 3461 Oulipo
Oulipo Problem's Link ---------------------------------------------------------------------------- M ...
- Csharp: read excel file using Open XML SDK 2.5
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- 用Perl编写Apache模块续 - SVNAuth
目标:以整合各类项目管理系统中的用户体系及权限体系为目标,实现SVN的集成式动态鉴权 支持平台:usvn.禅道等 - 开发中,本文仅对前期的探索工作做点整理 开发环境: Windows.XAMPP 1 ...
- 几个gcc的扩展功能
-finstrument-functions constructor destructor __builtin_return_address http://linuxgazette.net/15 ...
- 编译安装memcached扩展记要
编译memcached扩展的时候,得指定libmemcached库的位置 --with-libmemcached-dir=DIR 来指定路径.这个路径就是安装libmemcached时指定的prefi ...